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ANALYSIS AND CONTROL OF ASYMMETRIC VORTEX

FLOWS AND SUPERSONIC VORTEX BREAKDOWN

Osama A. Kandil*

In the period of December 1, 1990 to July 31, 1991, the Principal Investigator and two of

his Ph.D. students have achieved the following accomplishments under this grant.

I. Conference Papers, Proceedings and Journal Publications:

1. Kandil, O. A., Wong, T. C. and Liu, C. H., "Prediction of Steady and Unsteady Asymmetric

Vortical Flow Around Cones," AIAA Journal, Vol. 29, No. 9, September 1991.

2. Kandil, O. A. and Kandil, H. A., "Computation of Compressible Quasi-Axisymmetric

Slender Vortex Flow and Breakdown," Journal of Computer Physics Communications, Vol.

65, North-Holland, March 1991, pp. 164-172. (a copy is enclosed)

3. Kandil, O. A., Wong, T. C. and Liu, C. H., "Numerical Simulation of Unsteady Asymmetric

Flows around Cones," Journal of Fluids and Structures, Academic Press, December 1991.

4. Liu, C. H., Kandil, O. A. and Wong, T. C., "Computational Study for Passive Control of

Supersonic Asymmetric Vortical Flows around Cones," Impact Journal of Computing in

Science and Engineering, Academic Press, Inc., December, 1991.

5. Kandil, O. A., W°ng, T. C. and Liu, C. H., "Analysis and Computation of Trailing Vortices

and Their Hazardous Effects," Federal Aviation Administration International Wake Vortex

Symposium, Washington, D.C., October 29-31, 1991.

6. Kandil, O. A., Kandil, H. A. and Liu, C. H., "Supersonic Quasi-Axisymmetric Vortex

Breakdown," Proceedings of AIAA 9th Applied Aerodynamic Conference, AIAA 91-3311-

CP, Baltimore, Maryland, September 23-25, 1991. (a copy is enclosed)

7. Wong, T. C., Kandil, O. A. and Liu, C. H., "Three-Dimensional Computational Study of

Asymmetric Flows Using Navier-Stokes Equations," Asian Pacific Conference on Compu-

tational Mechanics, Hong Kong, December 11-13, 1991.

8. Kandil, O. A., Sharaf, H. H. and Liu, C. H., "Active Control of Asymmetric Vortical Flows

Around Cones Using Injection and Heating," Second National Fluid Dynamics Congress,

Los Angeles, CA, June 22-25, 1992. (Accepted)

9. Kandil, O. A., Wong, T. C. and Liu, C. H., "Three-Dimensional Navier-Stokes Asymmetric

Solutions for Cone and Cone-Cylinder configuration," AIAA 91-1732, AIAA 22rid Fluid

and Plasmadynamics Conference, Honolulu, Hawaii, June 24-27, 1991. (a copy is enclosed)

" Professor and Eminent Scholar, Department of Mechanical Engineering and Mechanics,
Old Dominion University, Norfolk, VA 23529
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II.

Kandil, O. A. and Kandil, H. A., "Computation of Steady and Unsteady Compressible

Quasi-Axisymmetric Vortex Flow and Breakdown," AIAA 91-0752, AIAA 29th Aerospace

Sciences Meeting, Reno, Nevada, Jan. 1991. (a copy is enclosed)

Kandil, O. A., Wong, T. C., Kandil, H. A. and Liu, C. H., "Thin-Layer and Full Navier-Stokes

Locally-Conical and Three-Dimensional Asymmetric Solutions," AIAA 91-0547, AIAA 29th

Aerospace Sciences Meeting, Reno, Nevada, Jan. 1991. (a cop}, is enclosed)

H. Papers Submitted to Journals

°

.

.

.

Kandil, O. A., Wong, T. C. and Liu, C. H., "Three-Dimensional Navier-Stokes Asymmetric

Solutions for Cones and Cone-Cylinder Configurations," submitted for Publication to the

AIAA Journal, July 10, 1991, Log. No. J19810.

Kandil, O. A., Kandil, H. A. and liu, C. H., "Supersonic Quasi-Axisymmetric Vortex

Breakdown," submitted for Publication to the ASME Journal of Fluids Engineering, August

14, 1991.

Kandil, O. A., Wong, T. C., Kandil, H. A. and Liu, C. H., "Thin-Layer and Full Navier-Stokes

Locally-Conical and Three-Dimensional Asymmetric Solutions," submitted for Publication

to the ASME Journal of Fluids Enginee.ring, August 18, 1991.

Kandil, O. A., Wong, T. C. and Liu, C. H., "Asymmetric Flow Around Cones with

Noncircular Sections," submitted for Publication to the Journal of Computers and Fluids,

August 6, 1990.

i

V

IIL NASA Research Highlights Publication and Presentation

,

.

Kandil, O. A., Wong, T. C. and Liu, C. H., "Computational Prediction of Three-Dimensional

Asymmetric Flows Around Cones," NASA Research Highlights, RTOP 505-59-32-02, De-
cember 1990.

"Asymmetric Locally-Conical and Three-Dimensional Flows Around Cones," NASA Exec-

utive Administration Review, NASA Langley, Hampton, VA, February 19, 1991. Presented

by Dr. Kandil
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National and International Presentations

"Supersonic Quasi-Axisymmetric Vortex Breakdown," AIAA 9th Applied Aerodynamic

Conference, Baltimore, Maryland, September 23-25, 1991. Presentation by Dr. Kandil.

2. "Navier-Stokes Calculation of Separated Vortex Flows," The 4th Nobeyama Workshop on

Supercomputing and Experiments in Fluid Dynamics, Nobeyama, Japan, September 3-5,

1991. Presentation by Dr. Liu.

3. "Three-Dimensional Navier-Stokes Asymmetric Solutions for Cone-Cylinder Configura-

tions," AIAA 22nd Fluid and Plasma Dynamics Conference, Honolulu, Hawaii, June 24-27,

1991. Presented by Dr. Kandil.

4. "Vortex-Dominated Flows: Physical Issues and Computational Applications," Televised

Seminar, Old Dominion University, April 5, 1991. Presented by Dr. Kandil.

5. "Computation of Steady and Unsteady Compressible Quasi-Axisymmetric Vortex Flow and

Breakdown," AIAA 29th Aerospace Sciences Meeting, Reno, January 7-10, 1991. Presented

by Dr. Wong.

6. "Thin-Layer and Full Navier-Stokes, Locally-Conical and Three-Dimensional Asymmetric

Solutions," AIAA 29th Aerospace Sciences Meeting, Reno, January 7-10, 1991. Presented

by Dr. Wong.

7. "Locally-Conical and Three-Dimensional Supersonic Asymmetric Flows Around Cones,"

Symposium on Computational Technology for Flight Vehicles, Washington, D. C., November

5-7, 1990. Presented by Dr. Kandil.

Wo

1.

.

.

Graduate Students

Mr. T. C. Wong defended his Ph.D. dissertation in April, 1991 and graduated in May 1991.

A copy of his dissertation has been delivered to the grant monitor (a copy of cover page

and abstract is enclosed)

Mr. Hamdy A. Kandil passed his Ph.D. qualifying exam in June 1991. He is currently a

Ph.D. candidate.

Mr. Hazem H. Sharaf will take his Ph.D. preliminary Exam in Nov. 1991.
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Computation of compressible quasi-axisymmetric slender vortex
flow and breakdown

Osama A. Kandil 1 and Hamdy A. Kandil 2

Department of Mechanical Engineering and Mechanics, Old Dominion Unwersity, Norfolk, VA 23529-0247, USA

Analysis and computation of steady, compressible, quasi-axisymmetric flow of an isolated, slender vortex are considered.

The compressible Navier-Stokes equations are reduced to a simpler set by using the slenderness and quasi-axisymmetry

assumptions. The resulting set along with a compatibility equation are transformed from the diverging physical domain to a

rectangular computational domain. Solving for a compatible set of initial profiles and specifying a compatible set of boundary..- "

conditions, the equations are solved using a type-differencing scheme. Vortex breakdown locations are detected by the failure
of the scheme to converge. Computational examples include isolated vortex flows at different Mach numbers, external

axial-pressure gradients and swirl ratios. Excellent agreement is shown for a bench-mark case between the computed results

using the slender vortex equations and those of a full Navier-Stokes solver.

Reprinted from COMPUTER PHYSICS COMMUNICATIONS
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Computation of compressible quasi-axisymmetric slender vortex
flow and breakdown

Osama A. Kandil _ and Hamdy A. Kandil 2

Department of Mechanical Engineering and Mechanics, Old Dominion Umcersity. Norfolk, VA ,_.,_?__9-.._ .0_,t7USA
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Analysis and computation of steady, compressible, quasi-axisymmetric flow of an isolated, slender vortex are considered.

The compressible Navier-Stokes equations are reduced to a simpler set by using the slenderness and quasi-axisymmetry

assumptions. The resulting set along with a compatibility equation are transformed from the diverging physical domain to a

rectangular computational domain. Solving for a compatible set of initial profiles and specifying a compatible set of boundary

conditions, the equations are solved using a type-differencing scheme. Vortex breakdown locations are detected by the failure

of the scheme to converge, Computational examples include isolated vortex flows at different Mach numbers, external

axial-pressure gradients and swirl ratios. Excellent agreement is shown for a bench-mark case between the computed results

using the slender vortex equations and those of a full Navier-Stokes solver.

1. Introduction

The phenomenon of vortex breakdown or

bursting was observed in the water vapor con-

densation trails along the leading-edge vortex cores

of a gothic wing. Two forms of the leading-edge

vortex breakdown, a bubble type and a spiral

type, have been documented experimentally [1].
The bubble type shows an almost axisymmetric

sudden swelling of the core into a bubble, and the

spiral type shows an asymmetric spiral filament

followed by a rapidly spreading turbulent flow.

Both types are characterized by an axial stagna-

tion point and a limited region of reversed axial

flow. Much of our knowledge of vortex break-

down has been obtained from experimental stud-

ies in tubes where both types of breakdown and

other types as well were generated [2-4].
The major effort of numerical simulation of

vortex breakdown flows has been focused on in-

compressible, quasi-axisymmetric isolated vortices.

Grabowski and Berger [5] used the incompressible,

quasi-axisymmetric Navier-Stokes equations. Ha-

1 Professor and Eminent Scholar.

: Graduate Research Assistant.

fez et. al [6] solved the incompressible, steady,

quasi-axisymmetric Euler and Navier-Stokes

equations using the stream function-vorticity for-

mulation and predicted vortex breakdown flows

similar to those of Garbowski and Berger. Spall,

Gatski and Grosch [7] used the vorticity-velocity
formulation to solve the three-dimensional, in-

compressible, unsteady Navier-Stokes equations.

Flows around highly swept wings and slender

wing-body configurations at transsonic and super-

sonic speeds and at moderate to high angles of

attack are characterized by vortical regions and

shock waves, which interact with each other. Other

applications which encounter vortex-shock inter-

action include a supersonic inlet ingesting a vortex

and injection into a supersonic combustor to en-

hance the mixing process, see Delery et. al [8] and

Metwally, Settles and Horstman [9]. These prob-

lems and others call for developing computational

schemes to predict, study and control com-

pressible vortex flows and their interaction with

shock waves. Unfortunately, the literature lacks

this type of analysis with the exception of the

preliminary work of Liu, Krause and Menne [10]

and Copening and Anderson [11].

In this paper, the steady, compressible Navier-

Stokes equations are simplified using the quasi-

0010-4655/91/$03.50 ¢ 199l - Elsevier Science Publishers B.V. (North-Holland)
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axisymmetry and slenderness assumptions. A

compatibility equation [10] has been used and the

governing equations are transformed to a rectan-

gular computational domain by using a Levey-
Lee-type transformation. A compatible set of ini-

tial conditions and boundary conditions is ob-

tained and the problem is solved using a type-dif-

ferencing scheme. The numerical results show the

effects of compressibility, external axial pressure

gradients and the swirl ratio on the vortex break-
down location. A bench-mark flow case has been

solved using these equations and the full Navier-

Stokes equations. The results are in excellent

agreement with each other.

2. Highlights of the formulation and computational
scheme

and tip) is a function relating the density integral

at any axial station to that at the initial station. It

is equal to 1 for incompressible flow. The sub-

script e refers to external conditions and the sub-

script i refers to initial location.

The governing equations become

0V 1 0 X

+ _-_ _-_(Xur) + p----_V= O,O---_

pdG X X u 077
=--V-r/,---O-, and r/_- ,where t,, P Ox

Ou VOu = 1 Op _-0 w2
u -_ + On 0 06 0 -7-

where

M O(crOu)+ X-;-_ -f _ '

(3)

(4a)

Starting with the steady, compressible Navier-

Stokes equations which are expressed in the cylin-

drical coordinates (Y, _ and q_), assuming the

isolated vortex flow to be slender [_/l= 0

(1/RfR-e'), g/U,_ = O (1/Rv/-R-e), where / is a char-

acteristic length, _ the radial velocity, U_o the

freestream velocity and Re the freestream Reyn-

olds number] and quasi-axisymmetric [0/0_() =

0], and performing an order-of-magnitude analy-

sis, the equations are reduced to a compressible,

quasi-axisymmetric, boundary-layer-like set. The

dimensionless flow variables O, P, u, v, w, T and

/_ are non-dimensionalized by p_, p_a_, a_,

a_/Cp and #_o for the density, pressure, velocity,

temperature and viscosity, respectively, where Cp
is the specific heat at constant pressure. Next, we

introduce a Levey-Lee-type transformation which

is given by

f6= oe.odx, n = _ dr, (1)

where X is given by

X(_) re(_ )

MSF= f--(-fy-- ro(_,)

----modified shape factor characterizing

the growth of vortex-flow boundary (2)

1 P____ (4b)
O= p-_r/_ and c= 0¢_%'

X 2 Op
-w = --, (5)
r Or/

Ow vOW x
_-_-(+ o_ + -y;( v - o_) w

-- X2r 2 Or/ crO-__ r ' (6)

aT vOT
_+

u Op X Vw 2 M cr-_--_=_+_ 7 +pr2_r

Mr{( Ou]z+ [ 3--_ w)]2)r (
+ (7)St- or/! ,r '

where Pr 1'- Prandtl number -- 0.72.

y-1
p = _pT, (8)

Y

where 3' - ratio of specific heats.

The viscosity /_ is related to the temperature

through the Sutherland law. At the initial

boundary, _--_i, we specify

u,--u(r/), wi--w(r/) and T,=T(r/). (9)

The other compatible initial conditions are ob-

tained from a compatibility equation and eqs. (5)
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and (8). At the vortex axis, _7-- 0, we specify

Ou OT

_,7 v w= _ 0. (10)

At the outer boundary, 77= r_e, we assume the

boundary to be a stream surface, specify the axial

pressure gradient (_p/_), and use the Euler

equations to match the outer profiles to those of

the viscous core to obtain the conditions on u_,
wo,_, pe.

Eqs. (3)-(7) are solved using an implicit, type-

differencing scheme. The computational proce-
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Fig. 1. Slender quasi-axisymmetric flow solutions for the effect of Math number, external axial pressure gradient and swirl ratio.
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dure consists of two parts. In the first part a

compatible set of initial profiles are obtained at

= _, and in the second part we use eqs. (4)-(8)

and the compatibility equation to obtain p, u, w,

p, T and V (or _,).

3. Numerical examples

In the present numerical examples, the outer

edge of the vortex, _, is taken as 10, and 1000

grid points are used and hence A_e = 0.01. The

= =

z

g

tl.

2.8 .i.,.|.l.m.u.l.,.s.l.l.u*

2.6_......_.__.._........_.._....__._._....-----_w
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2.I I
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!.4
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.8
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I
I

-_ "-----_ ----____.___._ _

-- . ° • • . ° o • . • • ,,

AX|AL DISTANCE' . X

H -•.S d_ -I.I2 dP/dx,,I.125 beiaol.2

2.8

2.4

2.2

2.•

c
q

1,4

"1.2

.2

,elo°,,.. .....

AXIAL OISTAN_ . X

H -|.75 d_ -I._ dP/dx-•.l_ beta-8.2

2.6
_'""', .... "0.......... _ .......... "J:-:": .........

2.4

2.2

2.8

1.8

"o 1.6

l.I .-A A --'''-''_

.8 ..__._¢ .__.___¢

°6-

.4 "-"_-'-"--_ _

I ---I .... B.... E .... _ .... i iilIi .II_I_L.IiiI.il. ,1 E .... ill

• .IS .ll .15 .2• ,2_ .3• .35 .4• .45 .5il .55 .6I
AXIAL OISTAHC( . X

H -0,5 d{ -I.I2 dP/dx-I.25 bet4-I.2

2.8

2.6 _ .._._..._.0 .....--- --_ '''----_

2.4

2.2

2.•

_" 1.8

1.6

1.4

I .2 .4 .6 .8 I.I 1.2 1.4 1.6 !.8
AXIAL OISTANC( . X

-I.75 d{ -1014 dP/dx-8.25 bets-•.2

Fig. 1 (continued).
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results are shown for two Mach numbers: M = 0.5

and 0.75. The step size in the axial direction is
0.02 for M = 0.5 and 0.04 for M = 0.75. For each

Mach-number case, we solve for two external axial

pressure gradients; (3p/Ox)e = 0.125 and 0.25 and

two swirl ratios; /3 = (w/u)r= l = 0.2 and 0.4. The

initial profiles for u,. w, and T, are u_ = constant,

r > 1 and T_ = 2.5, respectively. Fig. 1 shows MSF,

Ua, Pa and T_ which are referred to by curves A,
B, C and D; respectively. The results show that

the breakdown length is more than doubled when

the Mach number increases from 0.5 to 0.75. They

also show that while the outer boundary continu-

ously increases for M = 0.5, it initially decreases
wi =/3u,r(2 - r 2) for r < I and wi =/3ui/r for and then increases for M = 0.75; see the A curves.

AXIAL VELOCITYO|STRIBUT|ON CIRCU". VELOCITY DISTRIBUTION

16 .......... , .... , .... , .... , .... , ......... / 16 ..... , . , . , . , . , , , . , . , .

14 14 1

12

i i,8
2 ,

• . ,
1 • ..2_M :_,-'ia ii.'.12 .14 .16 .I..2_ .22

• . ClRCUH. VELOCITY . w
H 1.5 d_ - g,g2 dp/d. - il.25 beta - II.S

O£NSITY O|STR|BUTIGH

16 . . ! . , . , . , . , . | . , . i • , • , •

14

12 13

.  I./Jtl.lll .
.b4 .b6 .68 .71 .72 .74 .76 .78 .BE' .82 _ c_r_ mqr cP'° _ _ g _ _ _ --" -r*

PRESSU_ . • .....
, • m.5 d_ - ..._ _,/_. • .._ be*', - a._ 0t_s_r, ."_

H • I.S dlJ • 1.12 dl_ld, - 1.25 bets • il.t,

Fig. 2. Flow profiles for slender quasi-axisyrnmetric flows at M : 0.5 and 0.75, fl : 0.4, (dp/dx)e = 0.25.
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The adverse pressure gradient at the vortex axis
decreases faster for M=0.75 than for M= 0.5.

The results also show that the external axial pres-

sure gradient is a dominant parameter on the

breakdown length. As the external axial pressure

gradient is doubled, the breakdown length sub-

stantially decreases. Doubling the swirl ratio

slightly decreases the breakdown length.

Fig. 2 shows the profiles of u, w, p and p
across r at axial stations until the breakdown

location for M= 0.5 and 0.75 for the cases of

(dp/dx)e = 0.25 and /3 = 0.4. The initial profiles

are indicated by the number 1 and the next shown

station is indicated by 3. At M = 0.75, it is noticed

that the pressure and density gradients in the axial
direction decrease faster than those at M = 0.5.

v
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= :
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The profiles show that the viscous diffusion at

M = 0.75 is larger than that at M = 0.5.

Fig. 3 shows the profiles of u, w, v and p

which has been computed by the present method

and by an upwind Na_Aer-Stokes solver for the

case of M = 0.5, /3 = 0.6 and (dp/dx)e = 0. For

the Navier-Stokes solver a rectangular grid of
100 x 51 x 51 in the axial direction and cross-flow

plane is used. The curves are labeled by the capital

letters A, B.... etc. Comparing the curves of the

two sets, a remarkable agreement is seen.

It is concluded from the given numerical exam-

ples that increasing the flow Mach number has a
favorable effect on the vortex breakdown location.

The external axial pressure gradient is a dominant

parameter on the vortex breakdown. Its effect
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decreases as the Mach number is increased. Com-

parison of the present results with the full Navier-

Stokes results gives a strong confidence in the

present analysis. The present formulation and re-

sults are used to generate compatible initial pro-
files for the full Navier-Stokes solutions, and to

provide data for breakdown-potential cases for

accurate computations using the full Navier-

Stokes equations. The full Navier-Stokes equa-

tions are currently applied to these cases, so that
we can solve for the flow in the breakdown region.
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Abstract

The unsteady, compressible Navier-Stokes equations
are used to compute and analyze compressible quasi-
axisymmetric isolated vortices. The Navier-Stokes equa-
tions are solved usingan implicit, upwind, flux-difference
splitting finite-volume scheme. The developed three-
dimensional solver has been verified by comparing its so-
lution profiles with those of a slender, quasi-axisymmetric
vortex solver for a subsonic, isolated quasi-axisymmetric
vortex in an unbounded domain. The Navier-Stokes

solver is then used to solve for a supersonic quasi-
axisymmetric vortex flow in a configured circular duct.
Steady and unsteady vortex-shock interactions andbreak-
down have been captured. The problem has also been
calculated using the Eulet solver of the same code and
the results are compared with those of the Navier-Stokes
solver. The effect of the initial swirl has been tentatively
studied.

Introduction

The phenomenon of vortex breakdown or bursting
was observed in the water vapor condensation trails
along the leading-edge vortex cores of a gothic wing.
Two forms of the leading-edge vortex breakdown, a
bubble type and a spiral type, have been documented
experimentally x. The bubble type of vortex breakdown
shows an almostaxisymmetricsuddenswealingof tlm
coreintoa bubble,and tlmspindtypeof vormx break-
down showsanasymmetricspiralfilamentfollowedby a

rapidly spreading turbulent flow. Both types are chat-
acterized by an axial stagnation point and a limited
regionof reversedaxialflow. Much of our Imowl-

edgeof vortexbreakdownhasbeat obtainedfrom ex-

perimentalstudiesof pipeflowswhere both _ of
breakdown and other types as well were generated and
documented 2-4. The major effort of numerical sim-
ulation of vortex breakdown flows has been focused

on incompressible,quast-_etrk: isolated vortices.
Grabowski and Bergers used the incomptzasible, quasi-
axisymmeu-ic Navicr-Stokes equations m study isolated
vortexflow in an unbounded region.Hafez, et. ale solved
the incompressible, steady, quasi-axisymmelric Eulcf and

*Prof_m" ml F.miamz $dao_, I_m'mmt _' _ RnsiaNr_I
tad M,_amaict, Almci,m Fellow. AIAA.

**Oradua_ Re_am_ AJ_am, Same Det_., _ AIAA
***_oup _, _ Fqow Plffai_ _ .'kmor Minas,

AIAA.

Navier-Stokes equations using the stream function-
vorticity formulation for isolated vortex flows. They pre-
dicted vortex breakdown flows similar to those of Gar.
bowski and Berger. Menne 7 has also used the stream
function vorticity formulation for unsteady, incompress-
ible quasi-axisymmetric isolated vortex flow. Menne and
Liu _ used the Navier-Stokes equations to study three-
dimensional incompressible flows in a tube. Spall, et. al9,
presented a study of the structure and dynamics of bubble-
type vortex breakdown in incompressible flows using the
vorticity-velocity formulation. For more information on
the physical and computational aspects of the incompress-
ible vortex breakdown, the reader can refer to the paper
by Krause 1°.

Flows around highly swept wings and slender wing.
body coniiguradons at transonic and supersonic speeds
and at moderate to high angles of attack are character-
ized by vortical regions and shock waves, which inter-
act with each other. Other applications which encounter
vortex-shock interaction include a supersonic inlet ingest-
ing a vortex and injection into a supersonic combustor to
enhance the mixing process, see Delery, et. altl and Met-
wally, settles, and Horsunan t2. Figure 1 shows these ex-
ample.s, where Fig. 1.a and l.b are taken from ref. 11 and
Fig.l.c is taken from ref. 12. These problems and oth-
ers call fordevelopingcomputationalschemes topredict,

studyandcontrolcompressiblevortexflows andtheirin-
mraction with shock waves. Unfortunately,the literature
lacks this type of analysis with the exception of the pre-
limiuary work of Liu, Krause and Menne t3, Copening and
Andexson t', Delery, et. altt, Kandil and Kandil ts, Mead-
ows, Kumar and Hussalni x6.

In this paper, we use the unsteady, compressible full
Navies-Stokes equations to compute and analyze com-
pressible and supersonic quasi-axisymmetric isolated vor-
rices. An implicit, upwind, flux-difference splitting finite-
volume scheme, which is based on the Roe scheme, has
been used to solve the full Navier-Stokesequations.The
thre_-dimensionMsolver,whichiscalled"FTNS3D', has

beenusedtosolvetwoproblemsofisolatedvortexflows.

The firstproblemisthatofa subsonic,isolatedquasi-
axisymmetrievortexinan unboundeddomain.Thiscase

has been verified by comparing the flow-profiles solutions
with those of tim slender vormx solver of ref. 15. Next,
thethre_MimensionalNavier-Stokesequationsam used

tosolvefora supersonicquasi-axisymmetricvortexflow

This paper is declared a work of the U.S. Government and

is not subject to copyright protection in the United States. 1



ina configuredcircularductjl Sincetheflowisquasi-
axisymmetric,the solution is obtained by forcing Lheflow
variables to be equal on two axial (meridian) planes. So-
lutions for steady and unsteady vortex.shock interactions
and breakdown have been obtained. These solutions are

compared with those of the Euler equations using the in-
viscid version of same solver. Effects of the initial swirl
ratio has been tentatively investigated.

Formulation

The conservative form of the dimensionless, unsteady,
compressible, full Navier-Stokes equations in terms of
time-independent, body-conformed coordinates ¢1, _z and
£s is given by

0Q 01_,.
+

Ot O__

where

O(l_,),.=O;m=l_3, s=l_3 (1)

_" = _'*(xL,x_, x_) (2)

(_ = "_ = [p, put,pu2, pul, pe]t (3)

I_m = inviscid flux

l "Ek
J

= _[pU., puiU,. + Oil"p, pu2U-

+O_=p, pu3U. + 03_=p, (pc+ p)u,.]' (4)

(I_,). - viscous aad best,--conduction flux in
direction

= _[0, 0_'.._, Ok_"-.2,0_"..3,

o_(u.r_-_)]'; k=l-3, n=l-3(5)

U. = oM"uk (63

The first element of the three momen_ elements of Eq.
(5) _ _ven by

_2 , Ouk

_ ,_ ,_,I

+o_ og _-] co

The second and third elements of the momentum elements

are obtained by replacing the subscript I, eve_]where in

Eq. (7), with 2 and 3, respectively. The fast etemcnt of
Eq. (5) is given by

M_s, [(8_,,ap,_°o_'_'(ul, rkp - ql) = Re

-{ap,C'8_") auk

• n aup
+_,_ _,_ "_'r

1 _ ,0(_:)1 "p= 1-3 (8)

The reference parameters for the dimensionless form
of the equations ate L, a,_,L/a_,p:_ and _: for the
length, velocity, time, density and molecular viscosity.
respectively. The Reynolds number is defined as Re =
po_V=L/#ce, where L is the initial radius of the vor-
tex or the duct inlet radius. The pressure, p, is related
to the total energy per unit mass and density by the gas
equation

z + u:-+.])]P=(7-1)P e-_ . (9)

The viscosity is calculated from the Sutherland law

__,2 / 1 + C '_
. ='_" " _,T---_), C : 0.4317

(lo)

and the Prandtl number P, = 0.72. In Eqs. (1)-(8), the
indicial notation is used for convenience.

Computational Scheme

The computational scheme used to solve the full
Navier.Stokes equations is an implicit, upwind, flux-
difference splitting, finite-volume scheme. It employs

flux_erenee spring scheme of Roe. The Jaco-

b_ _ces of the mv_cid fluxes, _ = _; s ..= 1-3,
are sprit into backward and forward fluxes according to
the signs of the eigenvalues of the inviscid Jacobian ma-
trices. Flux limitets are used to eliminate oscillationsin
the shock region. The viscous and heat-flux terms are
centrally differenced. The resulting: _erence equation
is solved using approximate factorization in the _, _
and _ directions. In addition to the three-dimensional
flows, the present computer program can solve for ax-
isymme$c and quasi-axisymmetric flows. The resulting
comput_ program can also be used to solve the E_er
equations. This codeisa modified version of the CFL3D
which i_ currently called "FTNS3D". The modifications
have been _vel_ by the present authors.
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Computational Applications

In this section, two computational applications are
presented. The first application is that of a steady, sub-

sonic quasi-axisymmetric vortex flow in an unbounded
domain. The purpose of this application is to verify
the Navier-Stokes solver by comparing the results of this
case with those of a previously developed slender vortex
solver, see ref. 15. The second application is that of a
steady and unsteady, supersonic quasi-asymmetxic vortex
flow in a configured circular duct. This application is
solved by using pseudo-dine stepping and accuram-time
stepping. The results are compared with those of the Eu-
let equations solver of the same computer program. Next,
we consider each application and discuss its results.

Steady Subsonic Quasi-Axisymmetric Vortex
Flow In an Unbounded Domain

Here, the three-dimensional Navier-Stokes is used
to solve for an isolated quasi-axisymmetric flow. The
computational domain for the Navier-$tokes equations is
a parallelopiped rectangular domain with a square cross-
section of 10x 10 units. The downstream length is 10
units. The rectangular grid consists of 51 x51 x 100 points
in the two directions of the square section and in the axial
direction, respectively. The grid is clustered algebraically
at the axis of the parallelopiped domain. The step size in
the axial direction is 0.1.

For the slender-vortex solver xs, the computational do-
main is a cylindrical one and the solution is obtained on
one meridian plane having a radius of 10 and a length
of 10. The number of grid points in the radial direction
is 1000. The step size in the axial direction is 0.1. The
initial profile for the slender vortex solver are given by
ui -- axial velocity = constant, wi - tangential velocity =
/3 ui r(2--r2) for r < 1 and wi ffi3 uJr for r _ 1 and Ti -
temperature = 2.5, where 3 = 0.6. The Mach number at
the outer radius of the initial station, NIt = 0.5. The other
compatible initial profiles for Ph Vi and A (pressure, ra.
dial velocity and density; respectively) are obtained from
the radial momentum equation, a compatibility equation t3
and the equation of state. The external axial pressure gra-

dient is selected as (_) = 0. The external boundary

conditions on the cylindricaloute* boundaryare obtained

by using the Euler equations to match timouter profiles to
those of the viscous core in order to obtain the conditions

on u,, w=, 1", and p,.

For the Navier-Stokea solver, the _ profiles are
obtained from the previous initial profiles by interpolating
the slendervortexprofileson tlmrectangulargrid at the
initial station. The Reynolds number of the Navier-Stokes
solver for this case is set at 100.

Figure 2 shows the Navier-Sglges solutions on the
left and the slender-vortex solutions on the right. The
figure showscomparisonoftheprofilesofaxialvelocity
u,tangentialvelocityw, radialvelocityv,pressurep and
density p at the same axial stations which aremarked

by A, B, C .... It is remarkable to see the excellent
agreement betweenthe Navier-Stokes soluuonsand the
slender-vortex solutions at every axial station. It should
be emphasized here that the Navier-Stokes solutions for
this quasi-axisymmetric flow have been obtained by using
the three-dimensional solver on a three-dimensional grad.

Having verified the Navier-Stokes solver, the next
problem to consider is the supersonic vortex flow in a
configured circular duct.

Supersonic Quasi.Axisymmetric Vortex in
a Configured Circular Duct

Figure 3 shows a configured circular duct which con-
sists of a swaight cylindrical part at the inlet that is fol-
lowed by a short, diverging cylindricalpart. At x =
0.75 and beyond, theduct radius is kept constant and a
convergent-divergent nozzle with a throat radius of 0.95
is attached. The overall dimensions of the duct is 1x 2.90.

This configured duct ensures that the inlet supersonic flow
will becomes supersonic at the exit. Moreover, the con-
vergent part near the inlet ensures the stability of the
formed shock in the inlet region. This configured duct has
also been used by Delery, et. al xxfor their Euler equations
computations in an attempt to computationally model an
experimental set up. It should be pointedhere that the Eu-
lea"equations, used by Delery, et. al, assume isenthalpic
flow in order to drop the energy equation. This is a seri-
ons approximation since the upstream flow is a rotational
flow. Moreover, as our present calculations show, the
flow is actually unsteady and hence, the isenthalpic as.
sumption is not valid.

The Navier-Stokes solver is used to compute this flow
case by using a grid of 200x51 on two meridian planes,
where the 200 points are in the axial direction and the 51
points are in the radial direction. The grid is clustered at
the center line (eL) and at the wall. It is also clustered
in the diverging part nearthe inlet. The two meridian
planes are spaced circumferentially at a certain angle so
that the aspect ratio of the minimum grid size will be less
than 2. The upstream Mach number is M_ = 1.75 and
the Reynolds number for the Navier-Stokes computations
is 104. The initial profile for the tangential velocity is

given by

= 1 - exp - (11)
U=

where U,_ = 1.74, r, = 0.2 and k, = 0.1. The maximum

is at r = 0.224 and it is equal to 0.32. The radial
velocity, v, at the initial station is set equal to zero and
the radial momentum equation is integrated to obtain the
initial pressure profile. Finally, the density p is obtained

from the definition of the speed of sound for the inlet
flow. With these compatible set of profiles, the computa-
tions for both the Navier-Stokesequations and the Euler
equations start. The e,xit boundary conditions are obtained
by extrapolation _om the interior since the flow is super-
sonicattheexit. The wall boundary conditions followthe



DgicalNavier-StokesandEulerequationsmUd-boundary
conditions.Thesecomputationshavebeencarriedouton
theCPokY YMP oftheNAS-Ames computationalfacil-
ides. The CPU dine is 30/_dgrid poinvfIeration for the
Navier-Stokescalculationand 20 _dgridpoint/iteration

fortheEulcrequations.

a. Pseudo-Time-SteppingSolutions

Figure4 showsthepseudo-timesteppingsolutionsof

theNavier-Stokes(NS)equationson _heleftandtheEuler
(E)equationson theright.Each column inthe figure

shows flowpropertiesatthecenterline,thetotalMach
contours,thestreamlinesthroughouttheductand a blow
up ofthestreamlinesinthevortexbreakdownregion.

The figureofpropertiesalongthecenterlineof the

NS solutionshows a strongshockattheinlet.Behind
theshock,thepressureand densitysharplyincreaseand
theaxialvelocitydecreasestoanegativevalue(upstream

flow)at x = 0.10. The axialvelocitybecomes more

negativeonemoretimeatx= 0.4indicatingtheformation
ofanotherbubble.At x= 0.7,theaxialvelocitybecomes
positiveand itcontinuouslyincreasesfilltheductexit.
The Mach number contoursof theNS solutionsshows

theshocksystemnear theinlet.The shockatthecenter

lineisa normalstrongshock,thenitbecomesanoblique
strongshock,againitbecomesanormalstrongshock,and

atthewallitbecomesanobliqueweak shock(supersonic-
supersonicflowsupstreamand downsu'eamoftheshock).
Itisseenthattheobliqueshockatthewallisfollowed

by a separationbubble(seetheslzeamlinefigure)which
isdue tothe shockand thedivergenceof theductat

thislocation.The streamlinesfigureof theNS solution
shows a verylargevortex-breakdownbubbleand the

blow-upfigureof the streamlinesshows anothersmall
bubb|eupstreamof thelargeone.

The figureof Eulersolutionshows similarvortex
breakdownfeatureswitha few differencesfrom theNS

soluuon, These differences are due to the absence of vis-
cous forces. The figure of _ along the cente_ fine
ofthe E solutionshowsasmmg shockattheinlet. Behind
theshock,thepressureand densitysharplyincreasetoa

levelhigherthanthatoftheN$ solution.The axialveloc.
itydecreasestoa negative value whichislessthanthat
of the NS solution. The Math-number contours of the E

solutionshow theshocksystemneartheinlet.The shock
at the center line is a normal strong syswat, then it be-
comes an oblique weak shock and at the wall it becomes
a strong normal shock where there is no shock induced
separation. Anoth_ normal shock develops at x = 0.61,
where the axial velocity becomes submnti,_ly negative.
The streamline figure shows three vortex-breakdown bub-
bles; two smallcounterrotatingbubblesandathirdlarge
bubble.The sizeofvortex-breakdownbubblesoftheE

solutionsislargerthanthoseoftheNS solution.

It shouldbe stressedherethatthisisthefirsttime,

that we know of, such solutions have been presented for
supersonicvortex breakdown.

b. Time-Accurate-Stepping Solutions

Ithasbeen noticeddurmg thepseudo-dinestepping
soluuons that the residual-error dropped two orders of
magnitude and then it went through oscillations. It is
thendecided that time-accurate.stepping solutions must
be checked. The same problem was recalculated using the
NS equations and E equations with At = 0.005. Figures
5-.8 show snap shots of the time accurate solutions of
the NS equations on the left and the E equations on the
right. The snap shots are shown every 400 time steps.
The figures show the streamlines (Fig. 5), blow-up of
streamlines in the breakdown region (Fig. 6), total Mach-
number contours (Fig. 7) and flow properues at the center
line(Fig. 8).

Following the snap shots of NS streamlines (Figs. 5
and 6), we see a large bubble forming at the center line
at the time t = 4. At t = 6, the bubble expands in the
upstream and lateral directions. During this time period t
= 4--6, the Mach contours (Fig. 7) show the shock system
at the inlet moving in the upstream direction. At t = 8,
two bubbles appear and ate convected in the downstream
direction. The Mach contours show that the shock moves
upstream and reaches the inlet as a normal strong shock.
At t = 10, a new vortex breakdown occurs producing
new small bubbles which combine to form a large bubble
at t = 12. It should be noted here that the bubble at

t = 12 resembles that at t ffi 4. This suggests that the
vortexbreakdownprocessisalmostperiodic. To show

theperiodicityof the breakdown,one has to pickup
the exact corresponding snap shots which are one period
apart. This search is underway and it will be shown in
the near future. The solutions at t = 12, 14 and 16 show a

trend of repetition of the breakdown process. It should be
noted that the separation bubble at the wall goes through
a periodic process of convection and reproduction. The
Mach contours in the period of t = 10-16 show that the
shock system moves in the downstream direction again.
Figure 8 shows snap shots of the corresponding properties
variations along the center line. It shows the shock
motion and the motion of the negative values of the axial
velocity.

FoLlowingthe snapshotsoftheE equations,we see

that a large vortex appears at the center line at t = 4.
At = 6, the vortex grows up and extends laterally and
upsa'_arns. At t = 8, it is convected downstmams and
anoth_ vortex appem's behind the shock near the inlet.
Figure 7 shows that the shock system near the inlet moves
upstreams in the period of t -- 4-8. The convection
process and production of new vortices behind the shock
continue thereafter (Figs. 5 and 6) while the shock system
moves downsa-eams. It should be noted that the motion
of the shock system of the E solutions is larger than that
of the NS solutions. The reason is the absence of the
viscosity and hence the flow slips at the wall. Moreover,
there is no separation bubble at the divergent pan of the
channel. The flow properties at the center line show the
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modon of the shock system and the motion of the negadve
values of the axial velocity.

Effect of Increasing Swirl Ratio

Next, the flow conditions aad duct dimensions are
kept constant while the initial swill ratio is increased to
3 = 0.38. The pseudo-time-stepping results ate shown in
Fig. 9. It is seen that the number of vortex breakdown
bubbles increases to three instead of the two bubbles of

the previous case, Fig. 4. Moreover, we notice that the
shock system of the present case is nearer to the inlet in
comparison with the shock system of the previous case.
Figure 10 show snap shots of the time-accurate-stepping
solutionsof thiscaseatt= 5, 12.5and 15.5.Again,
we seethevortexbreakdownprocessofproductionand

convectionand theassociatedoscillationof shocksys-
tem. The solutionshows largersizeand more number
ofbubblesincomparisonwiththoseofthepreviouscase

(Figs. 5-7). The time step of this case is the same as that
of the previous one, At = 0.005.

Concluding Remarks

The unsteady,compressiblefull Navier-Stokesequa-
tionsare used to compute and analyze compressible and
supersonicquasi-axisymmetricisolatedvortices.First,
the three-dimensional Navier-Stokessolverhas been

verified by solvingfor a subsonic,isolatedquasi-
axisymmctricvortexinan unboundeddomain. The re-

sultshavebeencomparedwiththoseofa slender-vortex
solverand theyarem excellentagreement.Second,the
three-dimensionalNavier-Stokesand Eulersolversare

usedtosolvefora supersonicquasi-axisymmetricvor-

texina configured circularduct.The ductisdesigned
suchthattheinflowand outflowconditionsaresuper-

sonic.The quasi-axisymmeu'icsolutionisobtainedby
forcingtheflowfieldvectartobe equalon two merid-
ianplanesincloseproximityofeachother.For thefirst

time, we have obtained supersmic vormx Ixeakdown so-
lutionsbehinda shock. The time-accuratesolutionof

the proNem shows that the vortex bceakdown bubbles
and the shock system ahead of them ate time dependent
The solution strongly indicates that the vortex breakdown
process and themotionof the shock system are periodic.
The Eulersolutionshows la_ersizeand more number
ofbubblesthanthoseoftheNavies-Stoke#solution.The

Eulersolutionalsoshows that the amplitudeoftheshock
oscillationislargerthanthatof theNavier-Stakessolu-
tion.Increasingtheinitialswirlratioshows that the size
andnumberofvormx-breakdownbubblesincrease. These

resultsatevitalforthemixingIXoceuinscramjetsand
their designforthebestperfon'nanceand efficiency. A
verycarefulpar,enetricstudy is underway to show the ef-
fects of the swirl ratio, Mach number, Reynolds number
and relative dimeamons of the duct Three-dimensional
solutionsarecurrentlybeingdeveloped.
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a Transonic shock-vortex interaction on wings b. Supersonic shock-vortex interaction
at inlets

c. Supersonic shock-vortex interaction
at nozzle exits

Figure I. Applications of vortex-shock interaction and vortex breakdown
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SUPERSONIC QUASI-AXISYMMETRIC VORTEX BREAKDOWN

Osama A. Kandil" and Hamdy A. Kandil "°

Old Dominion University, Norfolk, VA 23529

C. H. Liu""

NASA Langley Research Center, Hampton, VA 23665

ABSTRACT

An extensive computational study of supersonic quasi-
axisymmetric vortex breakdown in a configured circu-

lar duct is presented. The unsteady, compressible, full
Navier-Stokes (NS) equations are used for the present
computational study. The NS equations are solved for

quasi-axisymmetric flows using an implicit, upwind, flux-
difference splitting, finite-volume scheme. The quasi-
axisymmetric solutions are time accurate and are obtained

by forcing the components of the flowfield vector to be
equal on two axial planes, which are in close proximity of
each other. The computational study addresses the effect
of the Reynolds number, for laminar flows, on the evo-

lution and persistence of vortex breakdown. The effect
of boundary conditions at the duct exit on vortex break-
down is also studied. Finally, the effect of swirl ratio at

the duct inlet is investigated.

Introduction

The majority of the experimental studies of vortex
breakdown phenomenon has been focused on incompress-
ible flows in pipe s_-s. Two main types of vortex break-

down have been documented experimentally:, the quasi-

axisymmetric bubble type and the asymmetric spiral type.
Other types of vortex breakdown were also generated in
pipes.

The major effort of numerical study of vortex break.
down flows, has also been focused on incompressible,

quasi-axisymmetricisolatedvortices. Gmbowski and
Bergea z wea'e the first to use the incompressible, quasi-

axisymmetric NS equations to study isolated vortex flow
inan.unbounded region. Hafez, et. al_ solvedtheincom-

pressible,steady,quasi-axisymmetricEulerand NS equa-

tionsusingthe streamfunction-vorticityformulationfor

isolated vortexflows.They predictedvortexbr_kdown

flows similar to those of Oarbowski and Berger. galas
and Kumvila s solved the unsteady, quasi-axisymmetric

NS equations in a straight circular pipe. They ob-
tained steady, multiple bubble-type vortex breakdown for
a Reynolds number range of 100-1,800. Menne 9 has also

"Profenor and P_minent Scholar, Dqmmmm ot' Mechanical l_lineer-

hag and Medumicl, As_ciate Fellow AIAA.

" Gnzluate _ Assitaam. Memb_ AIAA.

"" Group Leader, Theoretical Plow Physic* Bmnd_ Stole, Metaling
AIAA.

Copyright @ 1991 by Ouwrm Kgndil. Published by The Amerlcm Institute

of Aeronautics and Amotmai_. Inc. with penn/ssioa.

used the stream function-vorticity formulation for study-

ing unsteady, incompressible quasi-axisymmetric isolated
vortex flows. Wu and Hwang I° used the stream function-

vorficity formulation to study quasi-axisymmetric vortex
breakdown in a pipe. Their study focused on the effects
of inflow, wall boundary conditions and Reynolds num-
ber on breakdown structure. They showed that the evo-

lution of breakdown can be steady, periodic or unsteady
depending on the inflow velocity profiles and Reynolds
number. Menne and Liu" integrated the laminar, in-

compressible, NS equations for the breakdown of a vor-

tex in a slighdy diverging pipe. They showed break-
down flow cases which are based on the purely quasi-

axisymmetric and non-axisymmetric analyses. The re-
suits were in good agreement with the experimental re-
sults of Leibovich 4. Spall, et. al t2 used the vorticity-

velocity formulation of the incompressible NS equations

to study the three-dimensional vortex breakdown. Breuer
and H_ne113 solved the unsteady incompressible NS equa-

tions using a dual-time stepping, upwind scheme to study
the temporal evolution of the three-dimensional vortex
breakdown. In Refs. 12 and 13, both types of breakdown;

the bubble type and the spiral type, were predicted. Re-
views of the physical and computational aspects of the in-

compressible vortex breakdown were presented by Krause
in Refs. 14 and 15. One of the most important aspect
of vortex breakdown which Krause discusses in Ref. 15

is the effect of side boundary conditions on the up- or
downstream motion of the breakdown point. Also. he

presents alternative outflow boundary condidons.

Transonic and supersonic flows around highly swept

wings and slenderwing-body configurations at moderate

to high anglesof attackarecharacterizedby interacting
vortexcotesand shock waves. Othe, applicationswhich

encounte,vortex-shockinteractionincludea supersonic

inletingestinga vortexand injectionofa swirlingfueljet

intoa supersoniccombustor toenhance mixing between
the air stream and the fuel _'n. In all these applications
vortex breakdown due to the interaction of a longitudi-

nal vortex and a shock wave may occur or is intended

to occur. For such problems, computational schemes are
needed to study, predict and control vortex-shock inter-

action including vortex breakdown. Unfortunately, the
literature lack this type of analysis with the exception
of the preliminary work of Liu, Kran_ and Menne zg,
Copening and Anderson 2°. Delery, eL ai t6, Kundil and
Kandil 2t and Meadows, Kumer and Hussaini 22.
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The first time-accurate NS solution for a supersonic

vortex breakdown was developed by the present au-
thors in Ref. 23. They considered a supersonic quasi-

axisymmetric vortex flow in a configured circular duct.
The time-accurate solution of the unsteady, compress-

ible NS equations was obtained using an implicit, up-
wind, flux-difference splitting finite-volume scheme. A
shock wave has been generated near the duct inlet and
unsteady vortex breakdown has been predicted behind

the shock. The predicted flow was characterized by the
evolution, convection and shedding of vortex breakdown
bubbles. The Euler equations were also used to solve the

same problem. The Euler solution showed larger size and
number of vortex-breakdown bubbles in comparison with
those of the NS solutions. The time-accurate solution was

carried out for 3,200 time steps which are equivalent to

a dimensionless time of 16. Only one value of Reynolds
number of 10,000 was considered in Ref. 23.

In the present paper, we expand our study of this
flow using time-accurate computations of the NS equa-

tions with a fine grid in the shock-vortex interaction re-
gion and for long computational times. Several issues are
addressed in the present study. First, we show the effect

of Reynolds number on the temporal evolution and per-
sistence of vortex-breakdown bubbles behind the shock.

In this stage of computations, the conditions at the down-

stream exit are obtained by extrapolating the components
of the flowfield vector from the interior cell centers. Al-

though the flow is supersonic over a large portion of the
duct exit, subsonic flow exists over a small portion of the
exit around the duct centerline. Therefore, selected flow

cases have been recomputed using a Riemann-invarient-
type boundary conditions at subsonic points of the duct

exit. Finally, the effect of swirl ratio at the duct inlet has
been investigated.

Formulation

The conservative form of the dimensionless, un-

steady, compressible, full NS equations in terms of time-
independent, body-conformed coordinates _,_2 and _3
is given by

0Q 0F-,=
0(E,). 0;m=l-3, s=l-3 O)

o-_-+ o_= o_. =

where

_= = _=(x,,x2,x3) (2)

- =i[p, aul,/,u_,pu_,ae] (3)

l_= - inviscid flux
1 t

= l[pu=, ,oulU= + 0j_=p, pu2U=

+o%_=p,pu3U. + 03_=p,(_ + p)U.]_ (4)

(E,.), _ viscous and heat-conduction flux in _'
direction

= ._[0,&d",_, Okt_,_3,

_'(u._.-qk)]t; k=l-3, n=I-3 (5)

U== 0k_=Uk (6)

The first element of the three momentum elements of Eq.

(5) is given by

s n Ou|

+_ _ _] (7)

The second and third elements of the momentum elements

are obtained by replacing the subscript 1, everywhere in
Eq. (7), with 2 and 3, respectively. The last element of

Eq. (5) is given by

Mo_a [ (Oil"Opt*Ok¢'(U:k_- o_)- --R-V

- s- n 0Up

+o_ o_ u_-;

1 Ok.0(d)_
"t (7- 1)Pr _ -_-J ;p= 1-3 (8)

The reference parameters for the dimensionless form

of the equations are L, ao,, L/a_, po, and po, for the
length, velocity, time, density and molecular viscosity,
respectively. The Reynolds number is defined as Re ffi

po_Vo_L/po,, where L is the initial radius of the vor-
tex or the duct inlet radius. The pressure, p, is related

tothe totalenergy per unit mass and density by the gas

equation

p=(7_l)p[ e 1 2 us_)]- _(u,+ g + (9)

The viscosityis calculatedfrom the Suthcrlandlaw

(1+C_
/_= T_/2\T + C]' C = 0.4317 (I0)

and the Prandtl number P, = 0.72. In Eqs. (1)-(8), the
indicial notation is used for convenience.
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Computational Scheme

The Computationalscheme used to solve the un-
steady, compressible full NS equations is an implicit,
upwind, flux-difference splitting, finite-volume scheme.
It employs the flux-difference splitting scheme of Roe
which is based on the solution of the approximate one-
dimensional Riemann problem in each of the three di-
rections. In the Roe scheme, the inviscid flux differ-
ence at the interface of a computational cell is split into
left and right flux differences. The splitting is accom-
pushed according to the signs of the eigenvalues of the
Roe averaged-Jacobian matrix of the inviscid flux at the
ceil interface. The smooth limiter is used to eliminate os-

cillations in the shock region. The viscous and heabflux
terms are linearized and the cross-derivative terms of the
viscous Jacobians are dropped in the implicit operator.
These terms are differenced using secord-order spatially
accurate central differencing. The resulting difference
equation is approximately factored and is solved in three
sweeps in the _1,_2 and _3 directions. The scheme is
used for third-order spatial accuracy and first-order tem-
poral accuracy. The scheme is coded in the computer
program which is called "FTNS3D'.

Computational Study and Discussion

Figure I shows a configured circular duct which con-
sists of a short, straight cylindrical part at the inlet which
is followed by a short divergent cylindrical part until the
axial length of 0.74. The divergence angle is 6*. The duct
radius is then kept constant and a convergent-divergent
nozzle with a throat radius of 0.95 is attached. The duct

exit radius is 0.98 and its total length is 2.9. The diver-
gent part of the duct ensures the stability of the formed
shock in the inlet region. The configuration of the duct
is intended to ensure that the supersonic inflow will be-
come supersonic at the exiL As the computations will
show, a small portion of the duct exit near its center-
line becomes subsonic at certain times for the specified
inflow conditions.

This configuredducthasalsobeenusedby Delery, et.
a116for their Euler equations computations of supersonic
vortex breakdowninanattempttocomputationallymodel

an experimental set up. It should be pointed here that
the Euler equations, used by DeleD', et. al, assume
isenthalpic flow in order to drop the energy equation.
This is a serious approximation since the upstream flow
is rotational. Moreover, as our present calculations show,
the flow is actually unsteady and hence, the isenthalpic
assumption is not valid.

The NS solver is used to compute all the following
flow cases by using a grid of 221x51 on two axial planes,
where 221 points are in the axial direction and 51 points
ate in the radial direction. In the inlet region up to
the 0.74 axial station, 100 grid points are used and the
remaining 121 points are used in the remaining part of
the duct. The grid is also clustered at the centerline (CL)

and the wall The minimum radial grid size at the CL is
0.002. The two axial planes are spaced circumferentially
at a certain angle so that the aspect ratio of the minimum
grid size will be less than 2. The upstream Mach number
is kept at 1.75 and the Reynolds number is varied from
2,000 up to 100,000. The initial profile for the tangential
velocity is given by

w _k, 1-exp - (11)
Uoc r

where U_ = 1.74, rm = 0.2 and 1%= 0.1. The maximum
t_-2the,swirl ratio/_, is at r = 0.224. The radial velocity, v,

initial station is set equal to zero and the radial
momentum equation is integrated to obtain the initial
pressure profile. Finally, the density p is obtained from
the definition of the speed of sound for the inlet flow.
With these compatible set of profiles, the computations
are carried out accurately in time with At = 0.0025.
The wall boundary conditions follow the typical Navier-
Stokes solid-boundary conditions. These computations
have been carried out on the CRAY YMP of the NASA

Langley Research Center. The CPU time is 40/zs/grid
point/iteration for the NS calculation.

Next, we present the results of the computational
study which covers the effects of Reynolds number, the
exit boundary conditions and the inlet swirl ratio.

Effect of Reynolds Number
For these flow cases, the Reynolds number values are
2,000; 4,000; 10,000; 20,000 and 100,000. The swirl
ratio,/_, is kept fixed at 0.32. The exit boundary condi-
tions are obtained by extrapolation from the interior ceil
centers.

Re = 2,000
Figm_ 2 shows the streamlines and Mach contours for
this flow case at t = 11, which is equivalent to 4,400
time steps. No vcl_x breakdown develops and the Mach
contours show a steady shock at the duct inlet The shock
is a normal shock over most of the duct inlet. The flow

at the duct exit is supersonic.
Re = 4,000
Figure 3 shows snapshots of the streamlines and Mach
contours for the flow case of Re = 4,000. For this

value of Reynolds number a single breakdown bubble is
seen at t ffi5 and it is eonvected downstreams as time

passes. This breakdown bubble is formed during the
downstream motion of the inlet shock, which reaches its
maximum downstream displacement at t ffi 5. Later on,
the shock moves upstream, as it is seen at t = 8, while
the breakdown bubble is convected in the downstream
direction. Theteaf_, the shockstays stationary at the
inlet. This swirling flow ease shows a transient single
breakdown flow. It should be noticed that at t = 5 a
small portion of the duct exit at its centerline becomes
subsonic. At t = 8, it expands radially to about 25% of
the duct exit radius.

Re = 10,000
Figures 4 and 5 show snapshots of the sUreamlines and
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Mach contours for the flow case of Re = 10,000. At

t = 3, a single breakdown bubble is formed behind the
downstream moving shock. In this range of t = 3-5, the
bubble grows in all directions while the shock moves
downstreams. In the time range of t = 6-8, the break-
down bubble splits into two bubbles which are convected
as they diffuse in the downstream direction. The inlet
shock moves upstreams during this time range. During
the time range of t = 9-12, the inlet shock slighdy oscil-
lates at the duct inlet while a new breakdown bubble is
formed behind the shock. As the bubble size and strength
increase, the inlet shock moves very slowly downstreams.
More breakdown bubbles (three bubbles) are formed as
seen at t = 17. The breakdown bubbles are then con-

vected downstreams (t = 19) while the inlet shock again
moves upstreams. As the most downstream bubble is
shed through the totally supersonic exit, the inlet shock
slowly moves downstreams. In the time range t = 22-
33, the shock keeps its slow downstream motion until it
becomes stationary. During this time, downstream shed-
ding of breakdown bubbles continues and the formation
of new breakdown bubbles slows down until it stops when
the inlet shock becomes stationary. Thereafter, no break-
down bubbles ate formed and the flow becomes steady.
This swirling flow case shows a transient multi-bubble
breakdown flow.

Re = 20,000
Figures 6 and 7 show snapshots of the streamlines and
Mach contours for the flow case of Re = 20,000. The
mechanism of evolution, convection and shedding of the
vortex-breakdown bubbles while the inlet shock is mov-
ing downstreams, then upstreams and finally down.streams
to become stationary is very similar to the previous case
of Re = 10,000. However there are some few differences.
First, the size, number and strength of breakdown bubbles
axe larger than those of the case of Re -- 10,000. Second,
the displacements of the inlet shock are larger than those
of the case of Re -- 10,000. Third, the wanslent time of the
multi-bubble breakdown is longer than that of the case of
Re = 10,000. The reader can easily compare the snapshots
of the streamlines and Math contours of the two cases at

exacdy the same time instants. Again this swirling flow
case shows a transient multi-bubble breakdown flow.

Re = 100,000
Figures 8 and 9 show snapshots of the streamlines and
Mach contours for the flow case of Re ,, 100,000. It
should be noted that the radial extension of the shown
streamlines snapshots is r -- 0.6, which is larger than
those of Re -- 2,000 - 20,000. Again the mechanism of
evolution, convection and shedding of the v_le, x break-
down bubbles up to t = 30 is very similar to the previous
flow cases of Re = 10,000 and 20,000. It is noticed that
the size, number and strength of breakdown bubbles are
larger than those of the previous cases. Moreover, it is
noticed here that short periodic evolution, merging, con-
vection and shedding cycles of the breakdown bubbles
occur, e.g.; the time periods of 16--21, 22-27 and 28-32.

At t = 33 and beyond, a new mode of evolution, convec-
tion and shedding of the breakdown bubbles occurs. It
should be noticed that the inlet shock keeps on moving
slowly in the downstream direction and another shock,
which is downstream of the inlet shock, does not extend
to the duct axis and is first seen at t = 30, also keeps on
moving in the downstream direction. During the motion
of these shocks a breakdown bubble grows behind the
inlet shock and sheds a breakdown bubble in the down-
stream direction. At t -- 61, the downstream bubble grows
up in size and strength. Later on, the upstream breakdown
bubble also grows up in size and strength. The upstream
breakdown bubble becomes larger and stronger than the
downstream bubble, and the downstream bubble is con-
vected through the duct exit at t = 78. Next the upstream
breakdown bubble is convected downstreams and new

breakdown bubbles appear behind the inlet shock. In the
time range of t = 84-95, the mechanism of the evolution,
merging, convection and shedding which is similar to that
in the time range of t = 24-35 is repeated. In the time
range of t = 96-120, the flow is similar to that of the time
range of t = 37-78. At t = 123 and beyond, the whole
process of vortex-breakdown-bubbles evolution, merging,
convection and shedding is repeated. It is seen that the
snapshots of streamlines at t = 124 and 130 are exactly
similar to those at t = 3 and 17. Therefore, it is concluded
that the vortex-breakdown mechanism for this flow case is

periodic with a long period of time. Within this long cy-
cle, short periodic cycles of vortex-breakdown develops.
In summary, this flow case shows that several periodic
modes of vortex breakdown develop, which correspond
to different frequencies.

Effect of Exit Boundary Conditions

The Math contours of the previous cases show that
varying small portions of the duct exit become subsonic.
Hence, extrapolating the components of the flowfield vec-
tar from the interior cell centers for the duct exit boundary
conditions is mathematically improper when it is viewed
through the behavior of the characteristics at subsonic
points. However, such boundary conditions could relxe-
sent typical physical conditions. Therefore, it is decided
to examine the effect of using the Riemann-invariant-type
boundary conditions at the subsonic points. This requires
that four variables are extrapolated from the interior cell
centers while the fifth must be specified at the exit. We
chose to specify the pressure at the duct exit at the sub-
sonic points.

For the flow case of Re = 100,000, we specified
the exit pressure Pb = P,¢ at the subsonic points. This
type of boundary condition is enforced at t = 45 of the
previous flow case (the solution of previous case at t
= 45 serves as initial condition for the present case).
Thereafter, the time-accurate integration with this type
of boundary condition is continued. Figure 10 shows
snapshots of the streamlines and Math contours of this
case. Although the solutions of this case in the time range
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of t = 46-61 is very similar to those of the previous case,

a completely different flow for this case develops as of
t = 63. The two breakdown bubbles which are seen at

t = 61 start moving in the downstream direction. They
are continuously convected without any new generation
of breakdown bubbles until they are completely shed

through the small subsonic portion of the duct exit. In
the meantime, the inlet shock disappears and the flow

becomes supersonic throughout the duct.

Figures 11 and 12 show the results for Re = 20,000
with Pb = P= and Pb = 2Poe, respectively. At t -- 5,
the breakdown bubble is exactly the same for these two
cases, as it is seen from the streamline figures and the

Mach- contour figures as well. At this instant of time,
these solutions are the same as those of Fig. 6. It is
obvious that the exit boundary conditions has not yet

affected the upstream breakdown bubble. At the advanced
time instants t = 18-20, we can see substantial differences
between the solutions at each time instant of Figures 11,
12 and 6.

Thus, it is concluded that the exit boundary condi-
tions have a substantial effect on the mechanism of break-

down bubbles evolution, merging, convection and shed-
cling. In particular, the solutions which are based on the

Riemann-invariant-type boundary conditions are depen-
dent upon the specified value of the pressure. It should
be noted here that the Riemann-invariant-type boundary
conditions, as it is well known is one dimensional and is

based on inviscid analysis. Although the duct-exit flow
is neither one-dimensional nor inviscid, the Riemann-

invariant-type-boundaty conditions are the best available
non-reflective boundary conditions. Therefore, the ques-

tion remains: what is the proper type of exit boundary
conditionthatone needs toapply7Refer toKrausexsfor

discussion on alternative boundary conditions.

Effect of The Inlet Swirl Ratio

In this flow case, the Reynolds number is kept at
100,000 and the inlet swirl ratio is increased to 0.38.

Figure 13 shows snapshots of the streamlines and Mach
contours up to t = 30. Comparing the results of the present
flow case with those of/_ = 0.32, Figs. 8 and 9, we
notice that the breakdown bubbles are larger and stronger.
Moreover, inthe timerangeoft= 17-30,thebreakdown

bubbles are oscillatingaround a mean positionand a

processofbubblegeneration,convectionand sheddingis

takingplacearounda largebreakdown bubble.The inlet

shock has a very small amplitudeoscillationaround a

mean position.Thisisa completelydifferentmechanism

from thatofthecaseofFigs.8 and 9.The computations

of thisflow case have not yet been carriedout further
in time.

Concluding Remarks

The unsteady, compressible NS equations are used

for extensive computational study of supersonic quasi-

axisymmetric vortex breakdown in a configured circular
duct. The quasi-axisymmetric solutions ate time accu-
rate. Several issues have been addressed in this paper.

First, we have shown the effect of Reynolds number on

the evolution, merging convection and shedding of vortex
breakdown bubbles. Several modes of vortex breakdown

have been obtained; a transient single-bubble breakdown,
a transient multi-bubble breakdown and an unsteady peri-
odic multi-bubble breakdown. These solutions have been

obtained by using extrapolated flow conditions from the
interior cell centers at the duct exit. Next, selected flow

cases have been recomputed using a Riemann-invariant-

type boundary conditions at the subsonic points of the
duct exiL It has been shown that substantial different
solutions have been obtained and the question of what

is the proper type of exit boundary conditions remains
to be answered. Finally, the effect of the inlet swirl ra-

tio has been investigated for the high Reynolds-number
flow. It has been shown that a completely different mech-
anism of vortex breakdown develops at advanced time

instants. Work is underway to understand this mode of
vortex breakdown.
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Figure 1. Typical grid for a supersonic configured

circular duct; 221 x51 x2
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Figure 2. Streamlines and Mach contours for a swirling flow
without breakdown, Moo = 1.75,/3 = 0.32,

r = 0.49 11_= 2,000,

t=5

[ t= 8 ./_ --_

Figure 3. Streamlines and Mach contours for a swirling flow

with a transient breakdown, Moo = 1.'/5, fl = 0.32,

Re = 4,000.
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Figure 4. Streamlines for a swirling flow with transient

multi-bubble breakdowns, Moo = 1.75,/3 = 0.32,

P_ = i0,000.
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Figure 6. Streamlines for a swirling flow with transient
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flow with transient multi-bubble breakdowns,
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Figure 12. Effect of exit boundary condition, Pb ----2Poo;
Moo = 1.75,/3 = 0.32, Re = 20,000.
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Abstract

The unsteady, compressible thin-layer and full
Navier-Stokes equations are used to numerically simu-
late steady and unsteady asymmetric, supersonic, locally-
conical flows around a 5°-semiapex angle circular cone.
The main computational scheme used for the present com-
putations is the implicit, upwind, flux-difference splitting,
finite-volume scheme. Comparisons of the solutions us-
ing the two sets of equations are presented for the flow
asymmetry and its control. Computational studies are
also presented to investigate the effects of the freestream
Reynolds number and the locally-scaled Reynolds number
on the flow asymmetry. These studies are carried out us-
ing the full Navier-Stokes equations. Three-dimensional,
asymmetric flow solutions are also presented for a 5*-
semiapex angle cone of unit length and a cone-cylinder
configuration. The three-dimensional solutions are ob-
tained by using the thin-layer equations and short-duration
transient side-slip disturbances along with a very fine grid.

Introduction

Highly swept, round and sharp-leading-edge wings
and pointed slender bodies are common aerodynamic
components to fighter aircraft and missiles. The study
of vortex-dominated flow around these isolated aerody-
namic components adds to our basic understanding of vor-
tical flows under various conditions including unsteady
vortex-dominated flows, vortex-shock interaction, asym-
metric vortex flow and vortex breakdown. In this paper,
we focus on the problem of asymmetric vortex flow about
slender bodies in the high AOA range. The problem is
of vital importance to the dynamic stability and control-
lability of missiles and fighter aircraft.

The onset of flow asymmetry occurs when the relative
incidence (ratio of angle of attack to nose semlapex angle)
of pointed forebodies exceeds certain critical values. At
these critical values of relative incidence, flow asymmetry
develops due to nattral and/or forced disturbances. The
origin of natural disturbances may be a wansient side slip,
an acoustic disturbance, or likewise disturbance of short
duration. The origin of forced disturbances is geometric
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ic. A_ociate Fellow,AIAA.

"°Gr_duJte R_.h Aai_,u_ Same Eke. Msmblr AIAA.

"**Gnduaite Rm,mrch _umt, Sm_ De_, lVimnber AIAA
tGroup Leader, TheoreUc_ How _ysics Branch, Semor Manber AIAA

This paper is declared a work of the U.S. Government and
is not subject to copyright protection in the United States.

perturbations due to imperfections in the nose geomemc
symmetry or likewise disturbances of permanent nature.
In addition to the relative incidence as one of the deter-

minable parameters for the onset of flow asymmetry, the
freestream Mach number, Reynolds number and shape of
the body-cross sectional area are important determinable
parameters.

Kandil, Wong and Liu _ used the unsteady, thin-layer
Navier-Stokes equations along with two different implicit
schemes to simulate asymmetric vortex flows around
cones with different cross-section shapes. The numer-
ical investigation was focused on a 5°-semiapex angle
circular cone and local conical flow was assumed. The

first computational scheme was an implicit, upwind, flux-
difference splitting, finite-volume scheme and the sec-
ond one was an implicit, central-difference, finite-volume
scheme. Keeping the Mach number and Reynolds num-
ber constants at 1.8 and I05, respectively, the angle of
attack was varied from 10" to 30*. At cr = 10', a steady
symmetric solution was obtained and the results of the
two schemes were in excellent agreement. At o_= 20*
and irrespective of the type or level of the disturbance, a
steady asymmetric solution was obtained and the results
of the two schemes were in excellent agreement. Two
types of flow disturbances were used; a random round-
off error or a random truncation-error disturbance and a
controlled transient side-slip disturbance with short du-
ration. For the controlled transient side-slip disturbance,
the solution was unique, and for the uncontrolled random
disturbance, the solution wasalso unique with the excep-
tion of having the sarne asymmetry changing sides on the
cone. At o_= 30% an unsteady asymmetric solution with
vortex shedding was obtained, and the vortex shedding
was perfectly periodic. Next, the angle of attack was
kept fixed at 20* and the Mach number was increased
from 1.8 to 3.0 with a step of 0.4. The solutions showed
that the asymmetry become weaker as the Mach number
is increased. The flow recovered its symmetry when the
Mach number reached 3.0. Selected solutions of steady
and unsteady asymmetric flows have also been presented
for cones with elliptic and diamond cross-sectional areas.
Passive control of the flow asymmetry has been tenta-
tively demonstrated by using a fin on the leeward side of
the body along the plane of geometric symmetry.

Siclari 2 used the unsteady, Navier-Stokes equa-
lions with a multi-grid, central-difference, finite-volume
scheme to solve for steady asymmetric conical flows



around cones with elliptic, diamond and biparabolic sec-
tions. He addressed steady-flow problems similar to those
of the present authors in reference 1. He considered the

flow around circular cones with semiapex angles of 5°,
6 °, 7 ° and 8° at an angle of attack of 20 ° and a Reynolds
number of 105. Varying the Mach number from 1.4 to 3.0

with a step of 0.4, he showed that the flow recovered its

symmetry as the Mach number increased. The higher the
semiapex angle was, the lower the Mach number

for the flow to recover it symmetry. Fixing the Mach

number at 1.8, the angle of attack at 200 , the Reynolds
number at 105 and the semiapex angle at 5 °, he decreased

the cross-section fineness ratio (ratio of width to length)
for different cross-sectional shapes. He showed that the
flow recovered its symmetry at a fineness ratio of 0.4 for

the elliptic-section cone, at 0.6 for the biparabolic-section
cone and at 0.6 for the diamond-section cone.

In a very recent paper by Kandil, Wong, and Liu 3,

several issues related to the asymmetric flow solutions
have been addressed. It has been shown that a unique

asymmetric flow solution is obtained irrespective of the
size of the minimum grid spacing at the solid boundary.
The asymmetry could reverse sides due to the random
nature of the disturbance. It has been also shown that

for the same flow conditions and same section fineness

ratio, diamond-section cones with sharp edges have less

flow asymmetry than those of the elliptic-section cones.
Moreover, it has been shown that passive control of flow

asymmetry of diamond-section cones requires fin heights
that are not necessarily equal to the local section width.

On the other hand, passive control of flow asymmetry
of circular and elliptic-section cones requires fins with
heights that are, at least, equal to the local section width.

Again, it was also shown that unsteady periodic asym-
metric flow with vortex shedding has been predicted.

In reference 4 by Kandil, Wong and Liu, several

unsteady, asymmetric vortex flows with periodic vortex

shedding for circular and noncircular section cones using
the thin-layer Navier-Stokes equations were presented and
studied. In reference 5 by Kandil, el. al, the authors

addressed the problem of asymmetric flow control using
side strakes and the thin-layer Navier-Stokea equations.

Two asymmetric flow cases have also been solved using
the full Navier-Stokes equations.

In the present paper, we address several issues related

to the flow asymmetry around circular cones. Under

the locally-conical flow assumption, steady and unsteady
asymmetric solutions using the thin-layer and full Navier-

Stokes equations are presented and compared. Also,
control of flow asymmetry using vertical fins and side
strakes are covered. The solutions for the control cases

are carried out using the thin-layer and full Navier-Stokes

equations and their results are compared and discussed.
Next, the effect of the fre,estream Reynolds number on

the flow asymmetry is studied under the lncally-.conical
flow assumption using the full Navier-Stokes equations.

This is achieved by keeping the axial station, at which the

locally-conical solution is obtained, constant at the value

of unity and changing the Reynolds number. The effect
of scaled Reynolds number (Reynolds number based on

the local axial station) on the flow asymmetry is also
studied using the full Navier-Stokes equations. This is

achieved by reducing the axial stauon and accordingly
scaling the Reynolds number, the cross-section diameter,

the grid fineness and the computational domain. Finally,
three-dimensional flow asymmetry is investigated around

a circular cone and a cone-cylinder configuration using
the thin-layer Navier-Stokes equations. The purpose of
this study is obtain flow asymmetry due to short-duration

disturbances and to investigate the effect of Reynolds

number, angle of attack and the cylinder afterbody on
the flow asymmetry.

Formulation

Full and Thin-Layer Navier-Stokes Equations

The conservative form of the dimensionless, unsteady,
compressible, full Navier-Stokes equations in terms of

time-independent, body-conformed coordinates _l _2 and
_3 is given by

0t + 0f m 0f' -0; m=l-3, s=l-3 (1)

where

61 1
(3)

I_= - inviscid flux

= _[PUm, pulUm + Ol(mp, pu2Um

,i

+_=p, pu3Ura + 03_rap, (pe + p)Um] t (4)

(L), = viscous and heat-conduction flux in _'

direction

= ._[0,&_'ul, &_'u2, &_'u3,
q
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U,. = _d=u_ (6)

The first element of the three momentum elements of Eq.

(5) is given by
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The second and third elements of the momentum elements

are obtained by replacing the subscript 1, everywhere in
Eq. (7), with 2 and 3, respectively. The last element of
Eq. (5) is given by

0k_5(%r_p - qk) = Re

0uk

OUp

_ .0(a:)l
"_(7- I)Pr_ --_-F'];P = 1- 3 (8)

The singlethin-layerapproximationsof thefullNavier-
Stokesequationsdemand thatwe onlykeepthederiva-

tivesin the normal direction to the body, f2,in the viscous
and heat flux terms in Eqs. (1), (7) and (8). Thus, we let

)
s=2fortheterm_inEq. (1) ands=2andn=2
in Eqs. (7) and (8). These equations reduce to

oQ o(L).
0---_"+ 0_" 0_2 " = 0 (9)

0k_"rki--= Re ¢0t_2+ 0_2] (10)

oS,(-(Uprkp- - {¢W

rio,:
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where

1 20uk
= oM2o5, ', ¢ = oM W = 0p 2Up (12)

The reference parameters for the dimensionless form
of th_ equations are L, a=, L/a_, p_ and /J_ for the
length, velocity, time, density and molecular viscosity,
respectively. The Reynolds number is defined as Re =
#o,V_L/_o¢, where L is the body length, and the pres-
sure, p, is related to the total energy per unit mass and
density by the gas equation

P=(7-1)p[e - 1 2+_+u_)] 03)

The viscosity is calculated from the Sutherland law

u =T 3/ _ ,C=0.4317 (14)

and the Prandtl number P_ = 0.72. In Exts. (1)-(12), the
indicial notation is used f_ convenience.

Boundary and Initial Conditions

Boundary conditions are explicitly implemented.
They include inflow-outflow conditions and solid-
boundary conditions. At the plane of geometric symme-
try, periodic _onditions are used for symmetric or asym-
metric flow applications on the whole computational do-
main (right and left domains). At the farfield inflow
boundaries freestream conditions are specified since we
are dealing with supersonic flows, while at the far-field
outflow boundaries first-order extrapolation from the in-
terior points is used. On the solid boundary, the no-slip
and no-penetration conditions are enforced; u_ = u2 = u3
= 0 and the normal pressure gradient is set equal to zero.
For the temperature, the adiabatic boundary condition is
enforced on the solid boundary.

For the passive control applications using vertical
fins, double thin-layer Navier-Stokes equations are used,
where one thin-layer is used normal to the body and
another thin-layer is used normal to the fin surface. For
these applications, solid-boundary conditions are enforced
on both sides of the fin.

The initial conditions correspond to the uniform flow
with ut = u2 = u_ = 0 on the solid boundary.

Computational Scheme

The main computational scheme used to solve the
thin-layer and full Navier-Stokes equations is an implicit,
upwind, flux-difference splitting, finite-volume scheme.
It employs the flux-difference splitting scheme of Roe.

The Jacobian matrices of the inviscid fluxes, A, =_q,_ •
s = 1-3, are split into backward and forward fluxes ac-
cording to the signs of the eigenvalues of the inviscid
Jacobian matrices. Flux limiters are used to eliminate os-

cillations in the shock region. The viscous and heat-flux
terms ate centrally differenced. The resulting difference
equation is solved using approximate factorization in the
_, f2 and _a directions. The resulting computer program
can be used to solve the thin-layer Navier-Stokes equa-
tions and the full Navier-Stokes equations. This code
is a modified version of the CFL3D which is currently
called "FTNS3D". In this code, the implicit, flux-vector
splitting, finite-volume scheme, which is based on the
Van-Leer scheme _, can also be used instead of the flux-
difference splitting scheme.

Computational Appfications and Discussions

I. Locally-Conical Asymmetric Flow Appfications

Locally-conical solutions of the thin-layer or full
Navicr-Stokcsequationsareobtainedusingone of two
methods. In the first method, the governingequations



are transformed using the conical-coordinate transforma-
tion. Invoking the conical flow conditions which re-

quire that the flow variables be independent of the ra-
dial distance (or axial distance, depending on the trans-

formation) from the cone vertex, equating the radial dis-
tance (or axial distance) which appears in the transformed
equations to a constant (equals to unity in most of the

present locally-conical solutions), the resulting equations
are solved on one spherical (or cross-flow) surface. In the

second method, the three-dimensional flow equations are
solved on two spherical (or cross-flow) surfaces which

are located in the very near proximity of a constant radial
(or axial) distance. During the psuedo-time or accurate-
time stepping, the tlowfield vector is forced to be equal at

the corresponding grid centers on the two surfaces. This

method is used in the present paper to obtain locally-
conical solutions. The resulting solutions from these two
methods ate the same locally-conical solutions. These

solutions correspond to the specified radial (or axial) dis-
tance and hence they change as we change the radial (or

axial) distance. The reason behind that is simply because
the transformed equations, according to the first method,

are not self-similar and hence they are not globally coni-
cal. This is shown below by developing the transformed
equations of the first method. Considering the unsteady,
compressible, Navier-Stokes equations in the Cartesian
coordinates,

cgq + cg(E - E,.)i = 0 ;i = 1 - 3 (15)
at c_x_

introducing the conical coordinates,

XI X2 ,_
r/t =w, rb=- r/_=xixi (16)

X3 X3

and using the chain rule, Eq. (15) is transformed to

+ (E- v,.

a t -&)3+2(/'f,) =0 (17)

where

= E - _zE3,E3 = E3 + _igl + _g_,

= E_ - r_Ev3,E_3 = E,3 + _IE,I+ r;iE,,2,

i,. - 1_,.3 (18)

The conical flow condition requires the flow variables be

independent of the coordinate r_ (radial distance). Invok-
ing this condition in Eq. (17) by dro_ing the derivatives

with respect to r/3, Eq. (17) reduces to

, Oq a a - L) +2(i L) 0+ L), + - =
(19)

It is obvious that the unsteady term includes _. More-

over, the viscous terms -_,_, _ and I, include r_, and

hence Eq. (19) is not self-similar. The explicit depen-
dence of the viscous terms on r]3 can be shown through
one of the elements of these vectors. For example, _e
consider

+ oz/-'7'\oz
/I

l%rb O_Tl Oral

+rh _r/_ 3 8_71 3 8_i

Thus, the unsteady term and viscous terms are scaled by

the radial distance _ and Eq. (19) does not represent a
globally-conical flow. The best to be done to make use
of this equation is to select a constant value for r_3, and

solve the resulting equation for what we call "locally-
conical flow". If _ is assigned another constant value, the

resulting equation will have another scale for the unsteady
term and viscous terms. It is concluded that Eq. (19)

becomes globally conical if the unsteady term and viscous
terms vanish, and hence only the steady Euler equations
are globally conical.

Next, we present comparison of the solutions using
the thin-layer and full Navier-Stokes equations. We also

present steady flow solutions using different Reynolds
numbers keeping 03 = 1 and steady solutions using r]3
= 0.5, 0.25, 0.1 and R, = 50,000; 25,000; 10,000; re-

spectively.

Steady Asymmetric Flow (a = 20", M_ = 1.8, R, = 10_)

Supersonic flow around a 5°-semiapex angle circular

cone at 20* angle of attack, freestream Mach number
of 1.8 and Reynolds number of 10_ is considered. The

thin-layer and full Navier-Stokes equations are used to
solve for asymmetric flow on a grid of 161 x81 points in
the circumferential and normal directions, respectively.

The grid is generated by using a modified Joukowski
transformation with a geometric series for grid clustering
in the normal direction. The minimum grid spacing in
the normal direction at the solid boundary is 10-_. The

maximum radius of the computational domain is 21 r,
where r is the radius of the circular cone at the axial

station of unity. Figure 1 shows the results of thin-
layer solution. The color graphics figure shows six snap
shots for the evolution 0fthe Steady asymmetric solution

during 10,000 iteration steps. The number from I-6 on
the total-pressure-loss contours correspond to the number

from 1-6 on the logarithmic residual-iterations curve. It
is seen that the solution is symmetric during the first 3000
iteration when the residual drops to machine zero (No. 1).

Then, the solution becomes slightly asymmetric as the
residual grows up (Nos. 2, 3). As the residual drops

again to machine zero, the flow asymmetry becomes

strong until it reaches to the stable asymmetric solution
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(Nos. 4, 5, 6). The final total-pressure-loss contour and
the corresponding surface-pressure coefficient are also
shown.

The full Navier-Stokes solution is shown in Fig. 2.
The residual-error drops 4.5 orders of magnitude in 2,000

steps, increases one order of magnitude after a total of
3,000 steps and then drops to machine zero in a total

number of iteration steps of 6,000. It is clear that the
full Navier-Stokes equations produce the asymmetric so-

lution faster than the thin-layer Navier-Stokes equations.
The total-pressure-loss contours show that the full Navier-

Stokes solution produces thicker shear layers than those

of the thin-layer solution. More contour resolution in the
vortex cores is produced by the full Navier-Stokes so-
lutions than that of the thin-layer solution. Finally, the

free-shear layer on the body right-side of the full Navier-
Stokes solution is shorter than that of the thin-layer so-

lution. However, the C_, figures of the two solutions are
exactly the same.

Asymmetric Flow Control Using Vertical
Fins (h = 0.5r, h = r)

Figures 3 and 4 show comparisons of the thin-layer
and full Navier-Stokes solutions for the control of the

flow of the preceding case. Two vertical fins of heights h
= 0.5r and r are placed in the leeward plane of geometric
symmetry, where r is the cone local radius. Figures 3 and

4 show the total-pressure-loss contours and the surface-
pressure coefficient. The thin-layer solutions are shown
on the left and the full Navier-Stokes solutions ate shown

on the fight. With h = 0.5r and using the thin-layer

equations, two vortex cores which are connected to each
other and to the body through free-shear layers, develop
from the left side of the body. From the fight side of

the body, a free-shear layer develops and crosses over
the fin to the left side of the body. It produces two

vortex cores; one at each comer of the body-fin juncture
with secondary separation below them. This case has

been solved accurately in time but it does not show any
vortex shedding or unsteadiness. When the fin height is

increased to h = r, perfect flow symmetry is obtained.

With h = 0.5r and using the full Navier-Stokes equa-
tions, a mirror image of the vcztex system and flow sepa-

rations of the thin-layer solutions is obtained. This is due
to the random nature of the disturbance. However, the

freeshear layer and vortex cores on the right are thicker
and shorter in height than those of the thin-layer solution.

However, the Cp coefficients of the two sets of equations
are exact mirror image of each other. With h = r, the full

Navier-Stokes equations produce the exact same solution
as that of the thin-layer equations. The reason behind the
flow asy_etry with h = 0.5r is that the free-s_ layer
from the fight-hand side of the body is still higher than
the fin height, which allows the flow disturbances from

the right and left side to interact.

Asymmetric Flow Control Using Side
Strakes (h = 0.3r)

Figure 5 shows a comparison of the thin-layer and
full Navier-Stokes solutions for the control of the flow

of the case of Fig. 1. Side strakes of height h = 0.3r,
when r is the local radius of the cone, are used for this

purpose. The grid used is generated using a hyperbolic

grid generator with transfinite grid interpolation to refine
the grid at the strake sharp edge. While the thin-layer
solution shows perfect symmetric flow, the full Navier-

Stokes solution shows slightly asymmetric flow. This

can be seen by comparing both the total-pressure-loss
contours and the surface-pressure coefficient of the two

solutions. Both solutions are obtained using a grid of
161x81 with the same transfinite interpolation. Both
surface-pressure coefficients show a jump in the pressure

value at the leading edges of the strakes. It should be

noted that side-strakes produce higher lift than that of the
vertical fin control.

Unsteady Asymmetric Flow (a = 30*, M_
= 1.8,R, = l0s)

Figures6 and 7 show comparisonsof thefullNavier-

Stokessolutionsand the thin-layersolutionsforunsteady

asymmetric flow with vortex shedding. The solutions

are obtainedby using the fullNavicr-Stokesequations

with a grid of 161 ×81 and the flux difference splitting
(FDS) scheme, thin-layer equations with a grid of 161 x81

and the FDS scheme, thin-layer equations with a grid
of 161x81 and the flux-vector splitting (FVS) scheme,

and full Navier-Stokes equations with a grid of 241 x81
and the FDS scheme. Typical of all the four solutions,
the residual error curves show a drop in the error fol-

lowed by a transient response and ending by a periodic

response. The lift coefficient curves show the final peri-
odic response. The first three solutions exactly show the
same number of time steps (At = 10 -3) of 700 for one-half

of the cycle of vortex shedding. The full Navier-Stokes
solution on the fine grid (Fig. 7) shows a slightly bigger
number of time steps (At = 10 -3) of 725 for one-half of

the cycle of vortex shedding. This is expected of the full
Navier-Stokes equations on the fine grid since the flow

has more real damping and viscous-force resolution than
the other three solutions, In the fourth case, the damping

will elongam the period of shedding and hence it reduces
the frequency of shedding. The frequency of shedding
of the first three solutions is 4.488 and the frequency of

shedding of the fourth solution is 4.333.

Asymmetric Flow Control Using a Vertical Fin (h = r)

Figure 8 shows the full Navier-Stokes solution of

asymmetric flow control using a vertical fin of h = r. This
is the flow considered in the preceding case. It is seen
that the vertical fin height is not enough to eliminate the
flow asymmetry. The flow is still asymmetric but steady.



Effectof DecreasingtheReynoldsNumberKeeping
theAxialDistanceFixed(x = 1,c_ = 20 °, M_=
= 1.8, Re = 20,000; 15,000; 10,000)

Figure 9 shows the results of a study to investigate
the effect of reducing the Reynolds number on the flow
asymmetry. The full Navier-Stokes equations are used on

a grid of 241 ×81. As the Reynolds number is decreased
keeping x = 1, the flow asymmetry decreases but it does

not completely diminish. In this study, the computational

domain is kept fixed in size and the minimum grid spacing
at the solid boundary is kept at 10-_. It should be stressed

here that with decreasing the Reynolds number to _th¢
values considered, only the full Navier-Stokes solutions

on a relatively fine grid will be valid. Strictly speaking,

the cut-off Reynolds number for flow asymmetry is below
10,000.

Effect of Decreasing the Reynolds Number and
the Axial Distance (x = 0.5, 0.25, 0.1, a -- 20 °,
M_= = 1.8, Re = 50,000; 25,000; 10,000)

Figure 10 shows the results of a study to investigate
the effect of reducing the axial distance and proportionally

the Reynolds number, the computational domain and the
minimum grid spacing at the solid boundary. In other

words, we are investigating whether the flow is self-
similar or not. The solutions shown in the figure ensure
that the flow is not self similar as the problem is scaled
at each axial station. However, in another numerical

study, we have shown that ff the Reynolds number is
increased by the same ratio as that of decreasing the

axial station (e.g. if x = 0.5 then R+ = 200,000 such
that xl_ = 100,000) and the problem is solved for the

corresponding reduced radius of the cone section and
its reduced computational domain, the asymmetric flow

solution is self similar at any section.

Unsteady Asymmetric Flow (_ = 35*,
Moc = 1.8, Re = l0 s

Figure 11 shows snap shots of the unsteady asym-
metric flow of the full Navier-Stokes equations for the

same circular cone as the angle of attack is increased
to 35 °. The residual error curve and the lift coefficient

curve show the same typical responses as those of Figs. 6
and 7. The period of shedding is smaller and equals to
550x 10.-3 = 0.55 and the corresponding shedding fre-

quency is 11.424.

II. Three.Dimensional Flow Applications

In Figs. 12-19, we present the results of three-
dimensional asymmetric flow solutions of the thin-layer

equations on a grid of 161 x81 ×65 in the circular, normal
and axial directions, respectively. There ate several issues

to be answered through the present computational study.
First, for the same circular cone and for the same flow

conditions (angle of attack, Mach number and Reynolds
number), will the three-dimensional flow solution be the

same as that of the locally-conical solution of Fig. 1? If

the answer is negative, the next question to address is: Is
there a length scale which relates the three-dimensional

solution to the locally-conical solution? The second issue
to be addressed is the effect of the Reynolds number, the

angle of attack and the cylindrical-afterbody length on the
three-dimensional flow asymmetry?

To address these issues, a 5°-semiapex angle circu-
lar cone of unit length (cone length is the characteris-

tic length) is considered. The three-dimensional grid of
161x81 x65 is generated by using a modified Joukowski

transformation at axial stations. The grid is clustered in
the normal direction of the body using a geomemc series

with the minimum grid spacing of 10-_at the vertex and
10-_at the axial station of unit length. A typical grid is

shown in Fig. 12. With the flow conditions set at _ =
20 °, M_ = 1.8 and R_ = 105, which are the same con-

ditions as those of the locally conical flow of Fig. I, the
three-dimensional solution produced a symmetric flow,
unlike the local-conical solution which produces asym-

metric steady flow. The reason for the difference is well
understood since the local-conical solution is obtained at

an axial station of x = 1.0. Hence, a length scale is

involved in the Reynolds number, as can be seen from

the analytical conical equation for steady viscous flow,
ECl. (19). Next, the search is directed at obtaining asym-
metric flow solutions for the three-dimensional core flow.

In Fig. 13, we show the solution for the same cone at
---40", M_ - 1.4 and 1_ = 4x106. It is seen that the

solution is asymmetric and is nearly self-similar over a

long axial distance of the cone length.

Next, the Reynolds number is increased to 6x 106 and

8x 106 keeping the other flow conditions constant at

--"40* and M_ = 1.4. Figures 14 and 15 show strong
asymmetric-flow solutions with already shed vortices. It
should be noticed that the flow asymmetry changes sides

as we move in the downstream direction. Hence, we have

spatial asymmetric vortex shedding which is qualitatively
similar to the temporal asymmetric vortex shedding of the
locally-conical flow solutions of Figs. 6, 7 and 1 I. The

flow instability is of spatial type.

In an attempt to address the issue of the effect of the

cylindrical afterbody on the flow asymmetry, a cylindrical
aIterbody of unit length is added to the unit conical

forebody. The flow configuration is solved for the flow
conditions of the isolated cone of Fig. 13. The results

are shown in Fig. 16. Comparing the total-pressure-
loss contours of Figs. 13 and 16, we see that the flow
asymmetry is stronger for the cone-cylinder configuration

in comparison with that of the cone alone. It should be
noted that inside the shock cone surrounding the cone-

cylinder configuration, subsonic flow exists and hence the
downstream boundary has an upstream effeCL Figures 17

and 18 show the total-pressure-loss contours and surface-

pressure coefficients in cross-flow planes for the cases of
Figs. 15 and 16.
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Finally, the angle of attack is increased to 50o keep-
ing the Mach number and Reynolds number constants at
1.4 and 8 x 106, respectively. The solution is obtained ac-
curately in time. In Fig. 19, we show two snap shots of
the solution at the time steps of n = 10,116 and 11,818
which correspond to t = 0.10116 and 0.11818, respec-
tively, since At = 10-5. Comparing the two solutions, one
can see vortex shedding. This case of three-dimensional
unsteady vortex shedding is computationally very expen-
sive since the stable time step is 10-5, and hence it was
not completed.

Concluding Remarks

In the present paper, the unsteady, compressible thin-
layer and full Navier-Stokes equations have been used
to solve for steady and unsteady asymmetric flows and
their passive control around a 5*-semiapex angle cone.
For the steady locally-conical asymmetric solutions, we
have shown that the full Navier-Stokes solutions pro-
duce thicker and shorter flee-shear layers than those of
the thin-layer solutions. For the unsteady locally-conical
asymmetric solutions, we have shown that the full Navier-
Stokes solutions on a fine grid produce longer periods of
vortex shedding and hence smaller shedding frequencies
than those of the thin-layer solutions. Next, we addressed
the effects of reducing the Reynolds number on the flow
asymmetry. First, the Reynolds number is reduced keep-
ing the axial distance constant. We have shown that the
cut-off Reynolds number for the flow asymmetry is less
than 10,000. Second, the Reynolds number is reduced
along with the proportional reduction of the axial distance,
the computational domain and the minimum grid spacing.
We have shown that the flow asymmetry disappears be-
low the Reynolds number value of 25,000. Moreover,
we have shown that the flow is not globally conical. Fi-
nally, the three-dimensional flow problem is addressed for
the same cone and a cone-cylinder configuration. Flow
asymmetry has been obtained using short-duration dis-
turbances. The flow asymmetry becomes smanger as the
Reynolds number and the angle of attack are increased.
It also becomes strong due to the addition of a cylindrical
afterbody. Unsteady flow asymmetry has also been ob-
tained. It has also been noticed that for certain flow condi-

tions, the flow asymmetry shows spatial vortex shedding

which is qualitatively similar to the temporal vortex shed-
ding of the unsteady locally-conical asymmemc flow.
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Figure 18. Total-pressure-loss contours and surface-pressure coefficients on cross-flow planes for
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Abstract

The unsteady, compressible, thin-layer Navier-Stokes

equations are used to obtain three-dimensional, asym-
metric, vortex-flow solutions around cones and cone-

cylinder configurations. The equations are solved us-

ing an implicit, upwind, flux-difference splitting, finite-

volume scheme. The computational applications cover
asymmetric flows around a 5°semi-apex angle cone of
unit length at various Reynolds number. Next, a cylin-

drical afterbody of various length is added to the conical
forebody to study the effect of the length of cylindrical

afterbody on the flow asymmetry. One of the compu-
tational solutions has been validated by comparing the
computed surface pressure with those of the experimen-

tal data. All the asymmetric flow solutions have been
obtained by using a short-duration side-slip disturbance.

Introduction

In this paper, the problem of asymmetric vortex-flow
around three-dimensional cone and cone-cylinder body is

addressed. This problem has received considerable at-
tention by researchers in the computational fluid dynam-
ics area t'7 and by researchers in the experimental fluid

dynamics area _t3. The problem is of vital importance
to the dynamic stability and controllability of missiles

and fighter aircraft. When flow asymmetry develops, it
produces side forces, asymmetric lifting forces and cor-

responding yawing, rolling and pitching moments that

might be larger than those available by the control sys-
tem of the vehicle. The onset of flow asymmetry oc-

curs when the relative incidence (ratio of angle of attack
to nose semi-apex angle) of pointed forebodies exceeds
certain critical values. At these critical values of rela-

tive incidence, flow asymmetry develops due to natural

and/or forced disturbances. The origin of natural dis-
turbances may be a transient side-slip, an acoustic dis-
turbance, or similar disturbance of short duration. The

origin of forced disturbances is geometric perturbations
due to imperfections in the nose geometric symmetry or

similar disturbances of permanent natm'e. In addition to
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the relative incidence as one of the influential parameters

for the onset of flow asymmetry, the freestream Mach
number, Reynolds number and shape of the body-cross

sectional area are also important parameters.

In several recent papers by the present authors 14, the

unsteady, thin-layer, compressible Navier-Stokes equa-

tions have been used to simulate steady and unsteady,
asymmetric vortex flows, including their passive control,
around cones with different cross-sectional shapes. The

emphasis of these papers was extensive computational
studies of the parameters which influence the asymmet-

ric flow phenomenon and its passive control. Since the
computational cost associated with the solution of three-

dimensional-flow problems with reasonable flow resolu-
tion is very expensive, all the computational solutions

were obtained using a locally-conical flow assumption.
Such an assumption reduces the problem solution to that

on two conical planes, which are in close proximity of
each other, and hence it reduces the computational cost

by an order of magnitude. Moreover, such solutions still
provide extensive understanding of the flow physics since
one can use very fine grids for reasonable flow resolution.
These studies showed that asymmetric flow solutions

were unique irrespective of the type of flow disturbance;
a random disturbance in the form of a machine round-off

error or a controlled disturbance in the form of a short-

duration side-slip disturbance. Unsteady asymmetric flow

solutions with perfectly periodic vortex shedding were
successfully simulated, and the solutions were unique ir-

respective of the computationalscheme used. We also
showed thatasthe Mach number was increased,theflow

asymmetry was decreasedand as the Reynolds number

was increased, the flow asymmetry was increased. The

cross-sectional shape of the cone has been shown to be a
very influential parameter on the flow asymmetry. Circu-
lar sectionsproduced verystrongflow asymmetry and di-

amond sectionsproducedrelatively-weakerflowasymme-

try.Passivecontrolof the flow asymmetry was demon-

strafedby using verticalfinsof differentheightsalong

the leeward planeof geometricsymmetry and by using
thinand thicksidestrakeswith differentorientations.It

was alsoshown thatside-strakescontrol is more practical
than the vertical-fin controlsince it was effective over

a wide range of angle of attack and provided additional
lifting force. In a _ paper, by the present authors s,
the fullNavier-Stolmssolutionswere compazed with the

thin-layerNavier-Stokessolutions.Itwas shown thatthe

fullNavier-Stokcssolutionsproduced thickerfree-shear



layers and more vortex-core resolution as compared with
those of the thin-layer Navier-Stokes equations. In refer-
ence 5, a few tentative three-dimensional flow solutions

were also presented.

In an attempt to simulate asymmetric vortex flow
around an ogive-cylinder body at an angle of attack of
40°, a freestream Mach number of 0.2 and a freestream
Reynolds number of 200,000; Degani and Schiff s used
the unsteady, thin-layer, Navier-Stokes equations along
with an implicit scheme which is second-order accurate in
time. The scheme uses central-differencing in the cross-
flow plane and upwind flux-vector splitting in the stream-
wise direction. By introducing a forced asymmetric dis-
turbance near the body nose in the form of a small surface
jet, asymmetric flow solution was obtained. When the jet
was turned off, the flow asymmetry dissipated and the
flow recovered its symmetry.

In a later paper by Degani 7, the same computational
scheme was used to solve for the flow around the same

ogive-cylinder body over a wide range of angle of attack;
c_ = 200 - 80°. His numerical experiments focused on
investigating the origin of vortex asymmetry. Based on
his results, he suggested that the flowfield around slender
bodies could be divided into three main groups depending
on the angle of attack range. This range might change
by -4-I0° , depending on the flow conditions. In the range
0° < c_ < 30°, the flow was symmetric and introduction
of small disturbances near the nose had a small effect on

the flow symmetry. In the second range, 30* < o, < 60°,
the flow became steady asymmetric upon introduction of
a space-fixed forced disturbance near the nose. The level
of asymmetry was a function of the location and size of
the forced disturbance, and for large size disturbances, the
asymmetry became unsteady with very high frequency.
However, when the disturbance was removed the flow
recovered its symmetric shape. He attributed the origin
of asymmetry to a convective-type-instability mechanism.
In the very high range, 60* < a < 80", theflow became un-
steady with vortex shedding upon introduction of a small
transient disturbance with short duration. He attributed

the origin of flow unsteadiness and vortex shedding to
an absolute-type-instability mechanism. In that range of
angle of attack, he also showed that the convective-type-
instability mechanism was possible upon introduction of
a space-fixed disturbance near the nose. Although this
investigation revealed good tentative conclusions, there
are several remaining questions to be addressed, which
are related to the scheme dissipative effects, particularly
in the cross-flow planes, and the grid fineness and its
resolution of the disturbance growth.

In the present paper, we focus on the three-
dimensional asymmetric flow problem. In particular,
we address several important issues concerning the flow
asymmetry around three-dimensional bodies. First, the
three-dimensional asymmetric flow arotmd a 5*semi-apex
angle cone of unit length is considered in response to a
short-duration disturbance in the form of a transient side

slip. With guidance from the locally-conical solutions, the
angle of attack is varied between 300 and 50°, the Mach
number is varied between 1.4 and 1.8 and the Reynolds
number is varied between 105 and 8x l0 s searching for
asymmetric flow solutions due to a short-duration distur-
bance. Next, the flow conditions are fixed and a cylindri-
cal afterbody is added to the same cone of unit length to
study the effect of the length of the cylindrical afterbody.
The computational results have also been verified using
comparison of the surface-pressure coefficient with that
of the experimental data of Landrum s.

Formulation

Thin-Layer Navier-Stokes Equations

The conservative form of the dimensionless, unsteady,
compressible, thin-layer Navier-Stokes equations in terms
of time-independent, body-conformed coordinates _l, _2
and _3 is given by

0(_ + 01_o 0(E")Z = 0; s = 1 - 3 (1)

where

_= = _=(x,,x2,x3) (2)

= j" = , pui, puz, pu_, pc]t (3)

1_= - inviscidflux

1 *I_k--=

J
i

= _'LoU=, puiUm + 0t,_mp, pu2U_.

+02_mp, pu3Ura + O3_mp, (pc + p)Um] t (4)

(I_,)2=_viscousand heat-conductionfluxin_2

direction

I[0,0_2_i,ad__a,oM2-,s,

_,_2(u, rk, - oa)]t; k = I - 3, n = 1 - 3 (5)

U,. = _=Uk (6)

The fast element of the three momentum elements of Eq.

(5) is given by

M_Re ( 0ul_¢'ri_ - _COd 2+ ¢_-_j (7)

The second and third elements of the momentum elements

are obtained by replacing the subscript 1, everywhere in
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Eq. (7), with 2 and 3, respectively. The last element of
Eq. (5) is given by

10
+¢

-¢(7-1)Pr 0_2 J ;p =1-3 (8)

where

] - ._(gtl k
¢ = ¢ = w =

o (7_"
(9)

In Eqs. (1)-(9), the dimensionless variables are referenced
to their appropriate freestream values. The dimensionless
density p, Cartesian velocity components ul, u2 and u3,
total energy per unit mass, e, dynamic viscosity, /., and
speed of sound, a, are defined as the ratio of the corre-
sponding physical quantifies to those of the free,stream;
namely, p_:, a_, poca_, /-_o¢and a_; respectively. The
pressure, p, is non-dimensionalized by po:a_, and is re-
lated to the total energy for a perfect gas by the equation
of state

P = (7 - 1)p e - _UjUj ; j = 1 -- 3 (10)

where 7 is the ratio of specific heats and its value is 1.4.
The viscosity,/_, is calculated from the Sutherland's law

, = T3/_(1 +c'_
\T + c]'c = 0.4317 (11)

where T is the temperature which is non-dimensionalized
by T_. The Prandd number, P_ is fixed at 0.72. The
Reynolds number is defined as R, = po:U_L/#_ and
the characteristic length, L, is chosen as the length of the
body.

In Eqs. (1)-(10), the indicia1 notation is used for con-
venience. The subscripts k, n, p and j are summation
indices, the superscript or subscript s is a summation in-
dex and the superscript or subscript m is a free index.
The partial derivative a is referred to by 0k.

Boundary and Initial Conditions

Boundary conditions are explicitly implemented.
They include the inflow-outflow conditions and the
solid-boundary conditions. At the plane of geomet-
ric symmetry, periodic conditions are used. Since the
freestream Mach number is supersonic and the inflow-
outflow boundaries are also supersonic, freestream condi-
tions are specified at the inflow boundaries and first-order
extrapolation of the flow variables is used at the outflow
boundaries. The conical shock enclosing the body is cap-
tured as part of the solution. On the solid boundary, the
no-slip and no-penetration conditions are enforced; ul =
u2 = u3 = 0, and the normal pressure gradient is set equal

to zero. For the temperature, the adiabatic boundary con-
dition is enforced at the solid boundary.

The initial conditions correspond to the freestream
conditions with ul = u2 = u3 = 0 on the solid boundary.
The freestreajTj_conditions are given by

p_: = a_ =T_ = 1,

Ulc¢ = M_¢ cos_ cosfl,

u_ = -M_ sin,_,

U3o¢ = Mo¢ sino_cosfl,

MLp_ = 1/7,e_: - 1 + _ (12)
7(7- 1) 2

where a is the angle of attack and fl the side slip angle.

Computational Scheme

The implicit, upwind, flux-difference splitting finite-
volume scheme is used to solve the unsteady, compress-
ible, thin-layer Navier-Stokes equations. The scheme uses
the flux-difference splitting scheme of Roe which is based
on the solution of the approximate Riemann problem.
In the Roe scheme, the inviscid flux difference at the
interface of computational cells is split into two parts;
left and right flux differences. The splitting is accom-
plished according to the signs of the eigenvalues of the
Roe averaged-Jacobian matrix of the inviscid fluxes at
the cell interface. The rain-rood flux limiter is used to

eliminate oscillations in the shock region. The viscous-
and heat-flux terms are linearized and the cross-derivative

terms are eliminated in the implicit operator. The vis-
cous terms are differenced using a second-order accurate
central differencing. The resulting difference equation is
approximately factored and is solved in three sweeps in
the _l _2 and _3 directions. The computational scheme
is coded in the computer program "CFL3D."

Computational Applications and Discussions

In the present computational applications, we consider
the three-dimensional solutions of the unsteady, com-
pressible, thin-layer Navier-Stokes equations for asym-
metric vortex flows around a circular cone and circu-
lar cone-cylinder configurations. There are several is-
sues to be addressed through the present study. First,
for the same circular cone of 5*-semi-apex angle _ and
for the same flow conditions and source of disturbance,
will the three-dimensional flow solution be the same as
that of the locally-conical flow solution? If the answer
is negative, the next question to address is: Is there a
length scale which relates the three-dimensional solution
to the locally-conical solution? The second issue to be
addressed is the effect of Reynolds number on the flow
asymmetry? The third issue to be addressed is the effect
of the cylindrical-afterbody length on the flow asymme-
try. Finally, we address the question of code and grid val-
idation by comparing the results of an asymmetric flow
solution with those of the experimental data t.



Circular Cone

A 5°-semi-ape x angle circular cone of unit length
(cone length is the characteristic length) is considered to
address the first two issues mentioned above. This is the
same circular cone which was considered by the authors
in Ref. l for the locally-conical flow solutions. A three-
dimensional grid of 161 ×81 x65 in the wrap around, nor-
mal and axial directions, respectively, is generated by us-
ing a modified Joukowski transformation at axial stations.
The grid is clustered algebraically in the normal direction
of the body using a geometric series with minimum grid
spacing of I0 -_ at the cone vertex and 10-s at the axial

station of unit length. A typical grid is shown in Fig. 1.
The cross-flow grid size of 161x81 is the same grid size
which was used for the locally-conical flow solutions of
Ref. 1.

With the flow conditions set at _ = 20°, M_ = 1.8 and
Re = 105, which are the same conditions as those of the

locally-conical flow of Ref. 1, the three-dimensional solu-
tion produces a symmetric steady flow, unlike the locally-
conical solution which produces asymmetric steady flow.
The reason for the difference is well understood since

the locally-conical solution is obtained at an axial sta=
tion of x = 1.0. Hence, a length scale is involved in the
Reynolds number, as can be seen from the analytical con-
ical equation for steady viscous flow. Next, the search is
directed at obtaining asymmetric flow solutions for the
three-dimensional cone flow. In Fig. 2, we show the so-
lution in the form of total-pressure loss for the same cone
at c_ = 40*, M_ = 1.4 and Re = 4x106. It is seen that
the solution is asymmetric and is nearly self=similar over
a long axial distance of the cone length. This solution
is obtained using a short-duration side-slip disturbance.
When the residual error drops four orders of magnitude,
a side=slip disturbance of 3 = 2° is applied for I00 it-
eration steps, then it is removed. Thereafter, the pseudo
time stepping is continued until the residual error drops
again four to live orders of magnitude and a stable asym-
metric solution is obtained. It should be noted that a ma-

chine round=off error type of random disturbance cannot
be used to obtain three-dimensional asymmetric solutions
since the residual error never drops to machine zero.

Next, the Reynolds number is increased to 5x106
and 6xl(Y s keeping the other flow conditions constant
at c_ = 40 and Moc 1.4. Figures 3 and 4 show the total-
pressure-loss solutions for these cases. Figure 3 shows
that the asymmetry of the vortical flow gets strong and the
self similarity of the flow asymmetry is substantially lost
However, it is noticed that the flow asymmetry does not
change sides as the solution develops in the downstream
direction. Figure 6, which corresponds to the R,, of
6x 10_, shows that the flow asymmetry changes sidles
as the solution develops in the downstream direction.
Moreover, it is noticed that shed vortices exist in the flow.
A close study of the solutions between the shown fourth
cross-flow plane and seventh cross-flow plane reveals
that the flow asymmetry changes from the right side

(fourth cross-flow plane) to the left side (seventh cross-

flow plane). The solutions on these two planes are nearly
scaled mirror-images of each other. The present spatial
flow asymmetry is qualitatively similar to the temporal
flow asymmetry of the locally-conical flow solution of
Ref. 1 (see Figure 8 of the present paper).

Figures 5 and 6 show front and rear side views of
the limiting streamlines for the cases of Re -- 4x 106 and
Re = 6x 106, respectively. By comparing the streamlines,
lines of separation and attachment of the front and rear
sideviews in each figure, it is noticed that the flow asym-
metry exists on the boundary and becomes stronger as
the Reynolds number increases. As the Reynolds number
increases, the separation and reattachment lines changes
from radial straight lines to highly curved lines.

Figure 7 shows the total-pressure-loss solution for the
same cone for a higher Reynolds number, Re = 8xl(P.
The asymmetry of the vortex flow becomes much stronger
as compared with the previous cases of Figs. 2--4. By
comparing the solution of this case with that of the Re
= 6 x 106, it is noticed the flow asymmetry of the case
with high Re changes sides along a shorter axial distance
(third and fifth cross-flow planes) in comparison with that
of the low 1_. Moreover, the flow asymmetry of the
case with high R_ changes sides one more time (fifth and
ninth cross-flow planes) and thus a complete wave length
of flow asymmetry is formed between the third and ninth
cross-flow planes. Strong spatial shed vortex exists in the
flowfield. This solution is strongly similar to the unsteady
asymmetry local-conical flow solution at different time
steps which is depicted in Fig. 8 on a cylinder with the
axis of the cylinder representing time. The behavior of the
flow asymmetry over one period in Fig. 8 is qualitatively
similar to the behavior of the flow asymmetry over one
wave length in Fig. 7. Figure 9 shows the total-pressure-
loss contours and surface-pressure coefficient at different
axial stations for the case of Fig. 7. The solutions at axial
stations of X/L = 0.2 and 0.9 are almost the same (the

total pressure losses are drawn to a scale given by the
ratioofthecirculardiameters atX/L = Istationand the

localaxialstation).The flowasymmetrybetweenthese

two stationsrepresentsa fullwave length.

Circular Cone-Cylinder Configurations

To address the issue of the effect of cylindrical af-
terbody length on the flow asymmetry a cylindrical af-
terbody of different lengths is added to the unit-length
conical forebody. The flow around the resulting cone-
cylinder configurations is solved with the flow conditions
of ot= 40,Mac = 1.4and R, = 4x106,which arcthe

same flow conditions of the isolated unit-length cone of
Fig.2. The lengthsofthecylindrical afterbody are cho-

senas 1, 1.5 and 2 and the corresponding grid sizes are
taken as 161x81x65,_61x81x69 and 161x81x72; re-
spectively. The source of flow dis_ce is the same
shortduration2*-side-slipdisturbance.The computed
total-pressurelossforthesecasesaregiveninFigs.I0,
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11 and 12; respectively. For the cone-cylinder configura-
tion of 1:1 (cone length: cylinder length), Fig. 10 shows
a very strong asymmetric flow on the cone, in compar-
ison with the flow asymmetry of the isolated cone of
Fig. 2, and on the cylindrical afterbody as well. It should
be noted that inside the conical _s.h_ogksurrounding the
cone-cylinder configuration, subsonic flow regions exist
and hence the downstream cylindrical-afterbody bound-
ary has an upstream effect. The cylindrical afterbody has
dual effects which increases the flow asymmetry, the first
is due to the cone-cylinder juncture and the second is due
to the increase of the local angle of attack of the leeward
side of the cylinder. Both of these effects increase the
spatial growth of the flow asymmetry.

For the cone-cylinder configuration of 1:1.5, Fig. 11
shows stronger forebody asymmetry (first five cross-flow
planes) in comparison with that of Fig. 10. On the cylin-
drical afterbody, three cross-flow planes are only shown
on a portion of its length. It should be noted here that
slight flow unsteadiness has been detected during the
computations. In Fig. 12, two snap shots are shown
for the unsteady asymmetric flow solution of the cone-
cylinder configuration of 1:2. Since the time step for a
stable time-accurate solution of this case does not exceed
10-s, it is computationaUy prohibitive to fully solve this

case.

Next, we show a comparison of the computed results
with available experimental data. For this purpose, we
consider the cone-cylinder configuration of 0.5:0.5 which
was experimentally tested by Landrum s. The configura-
tion angle of attack is 46.1% the Mach number is 1.6
and the Reynolds number based on the total configu-
ration length (cone + cylinder) is 6.6x 106. The cone
semi-apex angle is 9.5 °. The problem is solved using a
grid size of 161 xS1 x65. Figure 13 shows the surface-
pressure coefficient along with the experimental data, the
total-pressure-loss contours and the total Mach-number
contours at the axial stations of 0.075, 0.125, 0.225,
0.475, 0.575 and 0.775. First, the computed and mea-
sured surface-pressure coefficient are in good agreement
on all the axial stations. Second, by studying the total-
pressure-loss contours along with the total Math-number
contours, it is seen that flow asymmetry starts slightly at
X/I., = 0.0750, and spatially grows in the downslream di-
rection. Moreover, the asymmetry changes sides in the
downstream direction. This comparison conclusively val-
idates our computed results and the grid size.

Concluding Remarks

The unsteady, compressible, thin-layer Navier-Stokes
equations are used to obtain three-dimensional, asymmet-
ric, vortex-flow solutions around cones and cone-cylinder
configurations. Several important issues are addressed
in the present study. By increasing the flow Reynolds
number for flows around a cone, we have shown that

the flow asymmetry becomes s_ong and changes sides in

the downstream direction. For the high-Reynolds flows,
the spatial asymmetric flow develops in a wavy manner,
which is qualitatively similar to the temporal asymmetric
flow development of the locally-conical solutions, where
the flow asymmetry develops in a periodic manner. By
adding a cylmdri¢al afterbody to the conical forebody,
the flow asymmetry becomes stronger in comparison with
that of the isolated cone. As the length of the cylindri-
cal afterbody is increased, the flow asymmetry becomes
stronger and unsteady. All these flow solutions have been
obtained by using a short-duration side-slip disturbance.
Finally, the computed results and grid used are conclu-
sively validated.
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Figure 1. Typical conical grid for a three-dimensional cone, 161 x81 x65.
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Figure 2. Asymmetric flow solution around a cone of uni[ length, short-duration side slip.
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Figure 3. Asymmetric flow solution around a cone of unit length, short-duration side slip.

0 F_gure -1. Asymmetric flov,' solution around a cone of unit length, short-duration side slip.
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Figure 6. Front and rear sideviews of the limiting streamlines.
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Figure 7, Asymmetric flow solution around a cone of unit length, short-duration side slip.
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Figure I0. Asymmetric flow qolution around a cone-cylinder configuration I:I.
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